Skip to main content
Log in

Conductive network formation during annealing of an oriented polyethylene-based composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conductive polymer composite (CPC) based on carbon black (CB), polyethylene (PE), and poly(ethylene terephthalate) (PET) was fabricated, in which the majority of CB particles were selectively localized in the surface of in situ deformed, highly oriented PET microfibrils. The on-line measurement of the electrical resistivity of the CPC materials indicated that the critical time for conductive network formation decreased with the increase of the annealing temperature and the filler loading. The activation energy for conductive network formation was about 96 kJ/mol, which was much higher than that for common CB/PE composite due to the large size of the conductive microfibrils. By a thermodynamic percolation model, the percolation threshold at equilibrium state was 1.735 vol.%, below which the effective conductive network was never formed. The reorganization velocity of the conductive microfibrils was a function of annealing temperature. This study extended insight into the dynamic process of the conductive network formation during annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu JW, Florkowski W, Gerhardt R, Moon KS, Wong CP (2006) J Phys Chem B 110(25):12289

    Article  CAS  Google Scholar 

  2. Wang Q, Dai JF, Li WX, Wei ZQ, Jiang JL (2008) Compos Sci Technol 68(7–8):1644

    Article  CAS  Google Scholar 

  3. Tai XY, Wu GZ, Tominaga Y, Asai S, Sumita M (2005) J Polym Sci B 43(2):184

    Article  CAS  Google Scholar 

  4. Chen GH, Wang HQ, Zhao WF (2008) Polym Adv Technol 19(8):1113

    Article  CAS  Google Scholar 

  5. Park C, Wilkinson J, Banda S, Ounaies Z, Wise KE, Sauti G, Lillehei PT, Harrison JS (2006) J Polym Sci B 44(12):1751

    Article  CAS  Google Scholar 

  6. Zhang QH, Vichchulada P, Cauble MA, Lay MD (2009) J Mater Sci 44(5):1206. doi:10.1007/s10853-009-3256-7

    Article  CAS  Google Scholar 

  7. Gao JF, Yan DX, Yuan B, Huang HD, Li ZM (2010) Compos Sci Technol 70(13):1973

    Article  CAS  Google Scholar 

  8. Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzo L, Fu Q, Alig I, Peijs T (2010) Adv Funct Mater 20(9):1424

    Article  CAS  Google Scholar 

  9. Bin Y, Chen QY, Tashiro K, Matsuo M (2008) Phys Rev B 77(3):035419

    Article  Google Scholar 

  10. Miaudet P, Bartholome C, Derre A, Maugey M, Sigaud G, Zakri C, Poulin P (2007) Polymer 48(14):4068

    Article  CAS  Google Scholar 

  11. Yoon H, Okamoto K, Umishita K, Yamaguchi M (2011) Polym Compos 32(1):97

    Article  CAS  Google Scholar 

  12. Deng H, Zhang R, Reynolds CT, Bilotti E, Peijs T (2009) Macromol Mater Eng 294(11):749

    Article  CAS  Google Scholar 

  13. Zhang YC, Huang YH, Dai K, Pang H, Chen C, Li ZM (2011) Polym Plast Technol 50(15):1511

    Article  CAS  Google Scholar 

  14. Zhang R, Dowden A, Deng H, Baxendale M, Peijs T (2009) Compos Sci Technol 69(10):1499

    Article  CAS  Google Scholar 

  15. Zhang YC, Dai K, Tang JH, Ji X, Li ZM (2010) Mater Lett 64(13):1430

    Article  CAS  Google Scholar 

  16. Wu GZ, Asai S, Zhang C, Miura T, Sumita M (2000) J Appl Phys 88(3):1480

    Article  CAS  Google Scholar 

  17. Wu GZ, Miura T, Asai S, Sumita M (2001) Polymer 42(7):3271

    Article  CAS  Google Scholar 

  18. Cao Q, Song YH, Liu ZH, Zheng Q (2009) J Mater Sci 44(16):4241. doi:10.1007/s10853-009-3590-9

    Article  CAS  Google Scholar 

  19. Alig I, Skipa T, Lellinger D, Pötschke P (2008) Polymer 49(16):3524

    Article  CAS  Google Scholar 

  20. Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Phys Status Solidi B 244(11):4223

    Article  CAS  Google Scholar 

  21. Zhang C, Wang L, Wang JL, Ma CA (2008) Carbon 46(15):2053

    Article  CAS  Google Scholar 

  22. Zhang YC, Dai K, Pang H, Luo QJ, Li ZM, Zhang WQ (2011) J Appl Polym Sci. doi: 10.1002/app.35193

  23. Li B, Zhang YC, Li ZM, Li SN, Zhang XN (2010) J Phys Chem B 114(2):689

    Article  CAS  Google Scholar 

  24. Xu XB, Li ZM, Dai K, Yang MB (2006) Appl Phys Lett 89(3):032105

    Article  Google Scholar 

  25. Li SN, Li B, Li ZM, Fu Q, Shen KZ (2006) Polymer 47(13):4497

    Article  CAS  Google Scholar 

  26. Pang H, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) Carbon 49(6):1980

    Article  CAS  Google Scholar 

  27. Zhang C, Zhu J, Ouyang M, Ma CA (2009) Appl Phys Lett 94(11):111915

    Article  Google Scholar 

  28. Zhang C, Zhu J, Ouyang M, Ma CA, Sumita M (2009) J Appl Polym Sci 114(3):1405

    Article  CAS  Google Scholar 

  29. Su C, Xu LH, Zhang C, Zhu J (2011) Compos Sci Technol 71(7):1016

    Article  CAS  Google Scholar 

  30. Wu GZ, Asai S, Sumita M (2002) Macromolecules 35(5):1708

    Article  CAS  Google Scholar 

  31. Zhang C, Wang P, Ma CA, Wu GZ, Sumita M (2006) Polymer 47(1):466

    Article  CAS  Google Scholar 

  32. Cao Q, Song YH, Tan YQ, Zheng Q (2009) Polymer 50(26):6350

    Article  CAS  Google Scholar 

  33. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) J Mater Sci 17(6):1610. doi:10.1007/BF00540785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the Outstanding Youth Foundation of Natural Science Foundation of China (Contract No. 50925311) and the National Science Foundation of China (Contract Nos. 51073128, 20876099). The project is also funded by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China (Contract No. LK1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YC., Pang, H., Dai, K. et al. Conductive network formation during annealing of an oriented polyethylene-based composite. J Mater Sci 47, 3713–3719 (2012). https://doi.org/10.1007/s10853-011-6220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6220-2

Keywords

Navigation