Skip to main content
Log in

Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Optically transparent nanocomposites with enhanced mechanical properties were fabricated using stable dispersions of sub 10 nm ZrO2 nanoparticles. The ZrO2 dispersions were mixed with a commercially available bisphenol-A-based epoxy resin (RIMR 135i) and cured with a mixture of two amine-based curing agents (RIMH 134 and RIMH 137) after complete solvent removal. The colloidal dispersions of ZrO2 nanoparticles, synthesized through a non-aqueous approach, were obtained through a chemical modification of the ZrO2 nanoparticle surface, employing different organic ligands through simple mixing at room temperature. Successful binding of the ligands to the surface was studied utilizing ATR–FT-IR and thermogravimetric analysis. The homogeneous distribution of the nanoparticles within the matrix was proven by SAXS and the observed high optical transmittance for ZrO2 contents of up to 8 wt%. Nanocomposites with a ZrO2 content of only 2 wt% showed a significant enhancement of the mechanical properties, e.g., an increase of the tensile strength and Young’s modulus by up to 11.9 and 12.5%, respectively. Also the effect of different surface bound ligands on the mechanical properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ATR–FT-IR:

Attenuated total reflectance–FT-IR

DLS:

Dynamic light scattering

DPP:

Diphenyl phosphate

DTG:

Differential thermal analysis

DSC:

Differential scanning calorimetry

FT-IR:

Fourier-transform infrared spectroscopy

MTS:

Maximum tensile strength

NC:

Nanocomposite

NP:

Nanoparticle

rt:

Room temperature

SAXS:

Small angle X-ray scattering

SA:

Sorbic acid

TEM:

Transition electron microscopy

THF:

Tetrahydrofuran

TGA:

Thermogravimetric analysis

References

  1. May CA (1988) Epoxy resins: chemistry and technology, 2nd edn. Dekker, New York

    Google Scholar 

  2. Ellis B (1993) Chemistry and technology of epoxy resins, 1st edn. Blackie, London

    Google Scholar 

  3. Wetzel B, Haupert F, Zhang MQ (2003) Compos Sci Technol 63:2055

    Article  CAS  Google Scholar 

  4. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Mater Sci Eng A 393:1

    Article  Google Scholar 

  5. Vaia RA, Maguire JF (2007) Chem Mater 19:2736

    Article  CAS  Google Scholar 

  6. Zhao S, Schadler LS, Duncan R, Hillborg H, Auletta T (2008) Compos Sci Technol 68:2965

    Article  CAS  Google Scholar 

  7. Gibson RF (2010) Compos Struct 92:2793

    Article  Google Scholar 

  8. Giannakopoulos G, Masania K, Taylor AC (2011) J Mater Sci 46:327. doi:10.1007/s10853-010-4816-6

    Article  CAS  Google Scholar 

  9. Rafiee MA, Yavari F, Rafiee J, Koratkar N (2011) J Nanopart Res 13:733

    Article  CAS  Google Scholar 

  10. Kickelbick G (2005) Chem Unserer Zeit 39:46

    Article  CAS  Google Scholar 

  11. Wen J, Wilkes GL (1996) Chem Mater 8:1667

    Article  CAS  Google Scholar 

  12. Ajayan PM, Schadler LS, Braun PV (2005) Nanocomposite science and technology, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530

    Article  CAS  Google Scholar 

  14. Ruiz-Pérez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Polymer 49:4475

    Article  Google Scholar 

  15. Ochi M, Nii D, Suzuki Y, Harada M (2010) J Mater Sci 45:2655–2661. doi:10.1016/j.matchemphys.2011.04.034

    Google Scholar 

  16. Medina R, Haupert F, Schlarb AK (2008) J Mater Sci 43:3245. doi:10.1007/s10853-008-2547-8

    Article  CAS  Google Scholar 

  17. Zhou S, Wu L (2008) Macromol Chem Phys 209:1170

    Article  CAS  Google Scholar 

  18. Rai KN, Singh D (2009) J Compos Mater 43:139

    Article  CAS  Google Scholar 

  19. Becker C, Mueller P, Schmidt HK (1998) SPIE Proceedings 3469:88

    Article  CAS  Google Scholar 

  20. Ash BJ, Stone J, Rogers DF, Schadler LS, Siegel RW, Benicewicz BC, Apple T (2001) Mater Res Soc Symp Proc 661:KK2101-KK2106

    Google Scholar 

  21. Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) J Am Chem Soc 127:5608

    Article  CAS  Google Scholar 

  22. Garnweitner G, Niederberger M (2006) J Am Ceram Soc 89(6):1801

    Article  CAS  Google Scholar 

  23. Garnweitner G, Goldenberg LM, Sakhno OV, Antonietti M, Niederberger M, Stumpe J (2007) Small 3(9):1626

    Article  CAS  Google Scholar 

  24. Pinna N, Niederberger M (2008) Angew Chem Int Ed 47:2

    Article  Google Scholar 

  25. Tsedev N, Garnweitner G (2008) Mater Res Soc Symp Proc 1076:1076-K05-03

    Article  Google Scholar 

  26. Zhou S, Garnweitner G, Niederberger M, Antonietti M (2007) Langmuir 23:9178

    Article  CAS  Google Scholar 

  27. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy: a guide for students of organic chemistry, 3rd edn. Brooks/Cole, South Melbourne

    Google Scholar 

  28. Hesse M, Meier H, Zeeh B (2005) Spektroskopische Methoden in der organischen Chemie, 7th edn. Thieme, Stuttgart

    Google Scholar 

  29. Tackett JE (1989) Appl Spectrosc 43(3):483

    Article  CAS  Google Scholar 

  30. Pawsey S, Yach K, Halla J, Reven L (2000) Langmuir 16:3294

    Article  CAS  Google Scholar 

  31. Thomas LC (1974) Interpretation of the infrared spectra of organophosphorus compounds. Heyden, London

    Google Scholar 

  32. Randon J, Blanc P, Paterson R (1995) J Membr Sci 98:119

    Article  CAS  Google Scholar 

  33. Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Langmuir 12:6429

    Article  CAS  Google Scholar 

  34. Schulmeyer T, Paniagua SA, Veneman PA, Jones SC, Hotchkiss PJ, Mudalige A, Pemberton JE, Marder SR, Armstrong NR (2007) J Mater Chem 17:4563

    Article  CAS  Google Scholar 

  35. Lomoschitz CJ, Feichtenschlager B, Moszner N, Puchberger M, Müller K, Abele M, Kickelbick G (2011) Langmuir 27:3534

    Article  CAS  Google Scholar 

  36. Guerrero G, Mutin PH, Vioux A (2001) Chem Mater 13:4367

    Article  CAS  Google Scholar 

  37. Krell A, Klimke J, Hutzler T (2009) Opt Mater 31:1144

    Article  CAS  Google Scholar 

  38. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley-VCH, New York

    Google Scholar 

  39. Svergun DI (1992) J Appl Cryst 25:495

    Article  Google Scholar 

  40. Hull D (1999) Fractography: observing, measuring and interpreting fracture surface topography, 1st edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  41. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, Kaji K (1994) J Polym Sci Part B Polym Phys 32:625

    Article  CAS  Google Scholar 

  42. Saujanya C, Radhakrishnan S (2001) Polymer 42:6723

    Article  CAS  Google Scholar 

  43. Tallury SS, Pasquinelli MA (2010) J Phys Chem B 114:9349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Karin Kadhim at the Institute of Organic Chemistry, TU Braunschweig, for the FT-IR measurements, and Ms Bianca Tiedemann at the Institute of Technical Chemistry, TU Braunschweig, for the DSC measurements. We also thank Ms Rona Pitschke at the Max Planck Institute of Colloids and Interfaces in Potsdam Germany for the TEM measurements. Dr. Céleste A. Reiss at PANalytical B.V., Almelo, The Netherlands, is gratefully acknowledged for the SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Garnweitner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheema, T.A., Lichtner, A., Weichert, C. et al. Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. J Mater Sci 47, 2665–2674 (2012). https://doi.org/10.1007/s10853-011-6092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6092-5

Keywords

Navigation