Skip to main content
Log in

Preparation and properties of an injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan/beta-glycerophosphate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan (CS-TGA)/beta-glycerophosphate (β-GP) was prepared by combining physical and chemical crosslinking. The effect of the concentrations of CS-TGA and β-GP on gelation temperature of CS-TGA-GP hydrogel was investigated. The gelation and mechanical properties of CS-TGA-GP in situ gel system were studied by oscillatory rheology and unconfined compression testing. By the physical interaction of CS-TGA and β-GP, CS-TGA-GP system undergoes a fast gelation at body temperature within 2 min. In addition, CS-TGA-GP hydrogel contains a low concentration of β-GP, which significantly decreases the toxicity of the gel. Owing to the chemical crosslinking of disulfide bonds, the gel is durable and possesses high-mechanical strength without introducing any potential cytotoxicity. The integrity of CS-TGA-GP hydrogel maintains for more than 30 days both in vitro and in vivo, and the interior morphology visualized by scanning electron microscopy reveals that the gel has interconnected porous network structure. In vitro release behavior of protein from CS-TGA-GP hydrogel was investigated using BSA as model protein. There is a sustained protein release from the gel without any initial burst. In vitro cytotoxicity, hemolysis, and histopathological analysis reveal that the gel is biocompatible. These features indicate that CS-TGA-GP hydrogel is a promising candidate for injectable protein delivery system and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gariépy ER, Leroux JC (2004) Eur J Pharm Biopharm 58:409

    Article  Google Scholar 

  2. Joo MK, Park MH, Choi BG, Jeong B (2009) J Mater Chem 19:5891

    Article  CAS  Google Scholar 

  3. Sousa A, Maria DA, Sousa RG, Sousa EMB (2010) J Mater Sci 45:1478. doi:10.1007/s10853-009-4106-3

    Article  Google Scholar 

  4. Zhang NY, Liu MZ, Shen YG, Chen J, Dai LL, Gao CM (2011) J Mater Sci 46:1523. doi:10.1007/s10853-010-4957-7

    Article  CAS  Google Scholar 

  5. Shu XZ, Liu YC, Palumbo FS, Luo Y, Prestwich GD (2004) Biomaterials 25:1339

    Article  CAS  Google Scholar 

  6. Temenoff JS, Mikos AG (2000) Biomaterials 21:2405

    Article  CAS  Google Scholar 

  7. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chem Rev 104:6017

    Article  Google Scholar 

  8. Nguyen TTT, Tae B, Park JS (2011) J Mater Sci 46:6528. doi:10.1007/s10853-011-5599-0

    Article  CAS  Google Scholar 

  9. Lehr CM, Bouwstra JA, Junginger HE, Junginger HE (1992) Int J Pharm 78:43

    Article  CAS  Google Scholar 

  10. Mi FL, Shyu SS, Chen CT, Schoung JY (1999) Biomaterials 20:1603

    Article  CAS  Google Scholar 

  11. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) Biomaterials 27:388

    Article  CAS  Google Scholar 

  12. Bhattarai N, Gunn J, Zhang MQ (2010) Adv Drug Deliv Rev 62:83

    Article  CAS  Google Scholar 

  13. Jarry C, Leroux JC, Haeck J, Chaput C (2002) Chem Pharm Bull 50:1335

    Article  CAS  Google Scholar 

  14. Chenite A, Chaput C, Wang D et al (2000) Biomaterials 21:2155

    Article  CAS  Google Scholar 

  15. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Carbohydr Polym 46:39

    Article  CAS  Google Scholar 

  16. Kim S, Nishimoto SK, Bumgardner JD et al (2010) Biomaterials 31:4157

    Article  CAS  Google Scholar 

  17. Wand LM, Stegemann JP (2010) Biomaterials 31:3976

    Article  Google Scholar 

  18. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Biotechnol Adv 26:1

    Article  CAS  Google Scholar 

  19. Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Acta Biomater 3:23

    Article  CAS  Google Scholar 

  20. Amsden BG, Sukarto A, Knight DK, Shapka SN (2007) Biomacromolecules 8:3758

    Article  CAS  Google Scholar 

  21. Zhong C, Wu J, Chu CC (2010) Acta Biomater 6:3908

    Article  CAS  Google Scholar 

  22. Kast C, Bernkop-Schnürch A (2001) Biomaterials 22:2345

    Article  CAS  Google Scholar 

  23. Bernkop-Schnürch A (2005) Adv Drug Deliver Rev 57:1569

    Article  Google Scholar 

  24. Bernkop-Schnürch A, Hornof M, Zoidl T (2003) Int J Pharm 260:229

    Article  Google Scholar 

  25. Sakloetsakun D, Hombach JMR, Bernkop-Schnürch A (2009) Biomaterials 30:6151

    Article  CAS  Google Scholar 

  26. Joo MK, Sohn YS, Jeong B (2007) Macromolecules 40:5111

    Article  CAS  Google Scholar 

  27. Jin R, Teixeira LSM, Krouwels A et al (2010) Acta Biomater 6:1968

    Article  CAS  Google Scholar 

  28. Censi R, Fieten PJ, Martino PD, Hennink WE, Vermonden T (2010) Macromolecules 43:5771

    Article  CAS  Google Scholar 

  29. Tan H, Chu CR, Payne KA, Marra KG (2009) Biomaterials 30:2499

    Article  CAS  Google Scholar 

  30. Geever LM, Minguez CM, Devine DM, Nugent MJD, Kennedy JE, Lyons JG, Hanley A et al (2007) J Mater Sci 42:4136. doi:10.1021/bm100521x

    Article  CAS  Google Scholar 

  31. Ma D, Tu K, Zhang LM (2010) Biomacromolecules 11:2204

    Article  CAS  Google Scholar 

  32. Eng D, Caplan M, Preul M, Panitch A (2010) Acta Biomater 6:2407

    Article  CAS  Google Scholar 

  33. Lavertu M, Filion D, Buschmann MD (2008) Biomacromolecules 9:640

    Article  CAS  Google Scholar 

  34. Cho JY, Heuzey MC, Begin A, Carreau PJ (2006) Food Hydrocolloids 20:936

    Article  CAS  Google Scholar 

  35. Cho JY, Heuzey MC, Begin A, Carreau PJ (2005) Biomacromolecules 6:3267

    Article  CAS  Google Scholar 

  36. Cho JY, Heuzey MC, Begin A, Carreau PJ (2006) Carbohydr Polym 63:507

    Article  CAS  Google Scholar 

  37. Jin R, Teixeira LSM, Dijkstra PJ et al (2009) Biomaterials 30:2544

    Article  CAS  Google Scholar 

  38. Molina I, Li S, Martinez MB, Vert M (2001) Biomaterials 22:363

    Article  CAS  Google Scholar 

  39. Hiemstra C, Zhong ZY, Steenbergen MJV, Hennink WE, Feijen J (2007) J Controlled Release 122:71

    Article  CAS  Google Scholar 

  40. Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J (1996) J Controlled Release 39:47

    Article  CAS  Google Scholar 

  41. Crotts G, Park TG (1997) J Controlled Release 44:123

    Article  CAS  Google Scholar 

  42. Ekici S (2011) J Mater Sci 46:2843. doi:10.1007/s10853-010-5158-0

    Article  CAS  Google Scholar 

  43. Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Adv Drug Deliv Rev 54:933

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from 863 Program (2009AA03Z313) and Tianjin Municipal Natural Science Foundation Key Project (08JCZDJC17200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liandong Deng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Dong, A., Yang, J. et al. Preparation and properties of an injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan/beta-glycerophosphate. J Mater Sci 47, 2509–2517 (2012). https://doi.org/10.1007/s10853-011-6075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6075-6

Keywords

Navigation