Skip to main content
Log in

Size effect on stability of shear-band propagation in bulk metallic glasses: an overview

  • Anniversary Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding of the size effect on shear banding in bulk metallic glasses (BMGs) is currently the topic of active research but also remains under intense debates. In this article, we provide an overview of the recent research findings from experiments, theoretical modeling, and atomistic/continuum simulations which are intended to advance our knowledge related to the size effect on the stability of shear-band propagation in BMGs. Through the compilation of and comparison among the results reported in the literature, we aim at providing a comprehensive understanding of the underlying mechanisms and a unified physical picture of the size effect on shear-band propagation and its resultant ductility in BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Klement W, Willens RH, Duwez P (1960) Nature 187:869

    Article  CAS  Google Scholar 

  2. Ashby MF, Greer AL (2006) Scripta Mater 54:321

    Article  CAS  Google Scholar 

  3. Lu ZP, Liu CT (2004) J Mater Sci 39:3965. doi:10.1023/B:JMSC.0000031478.73621.64

    Article  CAS  Google Scholar 

  4. Waseda Y, Aust KT (1981) J Mater Sci 16:2337. doi:10.1007/BF01113569

    Article  CAS  Google Scholar 

  5. Davis LA (1975) J Mater Sci 10:1557. doi:10.1007/BF01031856

    Article  CAS  Google Scholar 

  6. Schuh CA, Hufnagel TC, Ramamurty U (2007) Acta Mater 55:4067

    Article  CAS  Google Scholar 

  7. Zhang Y, Greer AL (2006) Appl Phys Lett 89:071907

    Article  Google Scholar 

  8. Jiang MQ, Wang WH, Dai LH (2009) Scripta Mater 60:1004

    Article  CAS  Google Scholar 

  9. Liu YH, Liu CT, Gali A, Inoue A, Chen MW (2010) Intermetallics 18:1455

    Article  CAS  Google Scholar 

  10. Yang Y, Ye JC, Lu J, Wang Q, Liaw PK (2010) J Mater Res 25:563

    Article  CAS  Google Scholar 

  11. Guo H, Wen J, Xiao NM, Zhang ZF, Sui ML (2008) J Mater Res 23:2133

    Article  CAS  Google Scholar 

  12. Spaepen F (1977) Acta Metall 25:407

    Article  CAS  Google Scholar 

  13. Argon AS (1979) Acta Metall 27:47

    Article  CAS  Google Scholar 

  14. Ye JC, Lu J, Liu CT, Wang Q, Yang Y (2010) Nat Mater 9:619

    Article  CAS  Google Scholar 

  15. Hirata A, Guan PF, Fujita T, Hirotsu Y, Inoue A, Yavari AR, Sakurai T, Chen MW (2010) Nat Mater 10:28

    Article  Google Scholar 

  16. Gao YF (2006) Model Simul Mater Sci Eng 14:1329

    Article  CAS  Google Scholar 

  17. Homer ER, Rodney D, Schuh CA (2010) Phys Rev B 81:064204

    Article  Google Scholar 

  18. Lewandowski JJ, Greer AL (2006) Nat Mater 5:15

    Article  CAS  Google Scholar 

  19. Wright WJ, Schwarz RB, Nix WD (2001) Mater Sci Eng A 319–321:229

    Google Scholar 

  20. Yang B, Liu CT, Nie TG, Morrison ML, Liaw PK, Buchanan RA (2006) J Mater Res 21:915

    Article  Google Scholar 

  21. Wright JL, Samale MW, Hufnagel TC, LeBlanc MM, Florando JN (2009) Acta Mater 57:4639

    Article  CAS  Google Scholar 

  22. Chen HM, Huang JC, Song SX, Nieh TG, Jang JSC (2009) Appl Phys Lett 94:141914

    Article  Google Scholar 

  23. Zhao M, Li M (2009) J Mater Res 24:2688

    Article  CAS  Google Scholar 

  24. Wu FF, Zhang ZF, Mao SX (2009) Acta Mater 57:257

    Article  CAS  Google Scholar 

  25. Wu FF, Zhang ZF, Shen BL, Mao SXY, Eckert J (2008) Adv Eng Mater 10:727

    Article  CAS  Google Scholar 

  26. Ye JC, Lu J, Yang Y, Liaw PK (2009) Acta Mater 57:6037

    Article  CAS  Google Scholar 

  27. Chen CQ, Hosson JTMD (2010) Acta Mater 58:189

    Article  CAS  Google Scholar 

  28. Han Z, Wu WF, Li Y, Wei YJ, Gao HJ (2009) Acta Mater 57:1367

    Article  CAS  Google Scholar 

  29. Yang Y, Ye JC, Lu J, Liaw PK, Liu CT (2010) Appl Phys Lett 96:011905

    Article  Google Scholar 

  30. Egami T (2010) JOM-US 62:70

    Article  Google Scholar 

  31. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Nature 439:419

    Article  CAS  Google Scholar 

  32. Miracle DB (2004) Nat Mater 3:697

    Article  CAS  Google Scholar 

  33. Fan C, Liaw PK, Wilson TW, Dmowski W, Choo H, Liu CT, Richardson JW, Proffen T (2006) Appl Phys Lett 89:111905

    Article  Google Scholar 

  34. Fan C, Liaw PK, Liu CT (2009) Intermetallics 17:86

    Article  CAS  Google Scholar 

  35. Fan C, Ren Y, Liu CT, Liaw PK, Yan HG, Egami T (2011) Phys Rev B 83:195207

    Article  Google Scholar 

  36. Cheng YQ, Ma E (2011) Prog Mater Sci 56:379

    Article  CAS  Google Scholar 

  37. Gao YF, Yang B, Nieh TG (2007) Acta Mater 55:2319

    Article  CAS  Google Scholar 

  38. Yang Y, Ye JC, Lu J, Gao YF, Liaw PK (2010) Jom 62:93

    Article  Google Scholar 

  39. Cheng YQ, Ma E (2011) Acta Mater 59:1800

    Article  CAS  Google Scholar 

  40. Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Nat Mater 6:735

    Article  CAS  Google Scholar 

  41. Jang DC, Greer JR (2010) Nat Mater 9:215

    CAS  Google Scholar 

  42. Volkert CA, Donohue A, Spaepen F (2008) J Appl Phys 103:083539

    Article  Google Scholar 

  43. Schuster BE, Wei Q, Hufnagel TC, Ramesh KT (2008) Acta Mater 56:5091

    Article  CAS  Google Scholar 

  44. Wu XL, Guo YZ, Wei Q, Wang WH (2009) Acta Mater 57:3562

    Article  CAS  Google Scholar 

  45. Ye JC, Lu J, Yang Y, Liaw PK (2009) J Mater Res 24:3465

    Article  CAS  Google Scholar 

  46. Schuh CA, Nieh TG (2004) J Mater Res 19:46

    Article  CAS  Google Scholar 

  47. Song SX, Bei H, Wadsworth J, Nie TG (2008) Intermetallics 16:813

    Article  CAS  Google Scholar 

  48. Demetriou MD, Veazey C, Harmon JS, Schramm JP, Johnson WL (2008) Phys Rev Lett 101:145702

    Article  Google Scholar 

  49. Yu HB, Hu J, Xia XX, Sun BA, Li XX, Wang WH, Bai HY (2009) Scripta Mater 61:640

    Article  CAS  Google Scholar 

  50. Gu XJ, Poon SJ, Shiflet GJ, Lewandowski JJ (2010) Acta Mater 58:1708

    Article  CAS  Google Scholar 

  51. Xie S, George EP (2008) Intermetallics 16:485

    Article  CAS  Google Scholar 

  52. Vinogradov A (2010) Scripta Mater 63:89

    Article  CAS  Google Scholar 

  53. Dalla Torre FH, Klaumunzer D, Maass R, Loffler JF (2010) Acta Mater 58:3742

    Article  CAS  Google Scholar 

  54. Packard CE, Schuh CA (2007) Acta Mater 55:5348

    Article  CAS  Google Scholar 

  55. Cao AJ, Cheng YQ, Ma E (2009) Acta Mater 57:5146

    Article  CAS  Google Scholar 

  56. Cheng YQ, Han Z, Li Y, Ma E (2009) Phys Rev B 80:134115

    Article  Google Scholar 

  57. Wu FF, Zhang ZF, Mao SX, Eckert J (2009) Philos Mag Lett 89:178

    Article  CAS  Google Scholar 

  58. Wu WF, Han Z, Li Y (2008) Appl Phys Lett 93:061908

    Article  Google Scholar 

  59. Wu Y, Li HX, Jiao ZB, Gao JE, Lu ZP (2010) Philos Mag Lett 90:403

    Article  CAS  Google Scholar 

  60. Yang Y, Ye JC, Lu J, Liu CT (2011) Intermetallics 19:1005

    Article  CAS  Google Scholar 

  61. Wu Y, Li HX, Liu ZY, Chen GL, Lu ZP (2010) Intermetallics 18:157

    Article  CAS  Google Scholar 

  62. Johnson WL, Samwer K (2005) Phys Rev Lett 95:195501

    Article  CAS  Google Scholar 

  63. Zhang ZF, Eckert J, Schultz L (2003) Acta Mater 51:1167

    Article  CAS  Google Scholar 

  64. Greer AL (2009) Mater Today 12:14

    Article  CAS  Google Scholar 

  65. Zhang H, Maiti S, Subhash G (2008) J Mech Phys Solids 56:2171

    Article  CAS  Google Scholar 

  66. Miracle DB, Concustell A, Zhang Y, Yavari AR, Greer AL (2011) Acta Mater 59:2831

    Article  CAS  Google Scholar 

  67. Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH, Wright JL, Yoo MH, Horton JA, Inoue A (1998) Metall Mater Trans A 29A:1811

    Article  CAS  Google Scholar 

  68. Sun L, Jiang MQ, Dai LH (2010) Scripta Mater 63:945

    Article  CAS  Google Scholar 

  69. Liu YH, Liu CT, Wang WH, Inoue A, Sakurai T, Chen MW (2009) Phys Rev Lett 103:065504

    Article  CAS  Google Scholar 

  70. Lewandowski JJ, Wang WH, Greer AL (2005) Philos Mag Lett 85:77

    Article  CAS  Google Scholar 

  71. Yokoyama Y, Fujita T, Yavari AR, Inoue A (2009) Phill Mag Lett 89:322

    Article  CAS  Google Scholar 

  72. Pampillo CA (1975) J Mater Sci 10:1194. doi:10.1007/BF00541403

    Article  CAS  Google Scholar 

  73. Wright WJ, Hufnagel TC, Nix WD (2003) J Appl Phys 93:1432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.Y. is grateful to the financial support provided by the Hong Kong Polytechnic University for newly recruited academic staff (project code G-YH85), and the Research Grant Council (RGC), the Hong Kong Government, through the General Research Fund (GRF) with a project number of PolyU 5359/09E. Y.Y. is thankful to the graduate student, J.C. Ye, for conducting and analyzing the data of the microcompression experiments on the Fe-based MG micropillars, from which Fig. 9c is generated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Appendix: The α parameter and the extrinsic length scale L ext

Appendix: The α parameter and the extrinsic length scale L ext

The theoretical derivation of the α parameter has been detailed in our recent work [60]. For the information of readers, the general expression for the α parameter is introduced here. According to the dimensional analysis, the α parameter can be expressed as follows for a cylindrical BMG sample compressed between two cylindrical compression platens:

$$ \alpha = \left( {\sum\limits_{i = 1}^{2} {\Uppi_{i} \left( {\frac{D}{{D_{i} }},\frac{{H_{i} }}{{D_{i} }},\nu_{i} } \right)} \frac{E}{{E_{i} }}} \right)\frac{\pi }{4} $$
(7)

where the symbols D, H, E, and ν denote the object diameter, the object height, the Young’s modulus, and the Poisson’s ratio, respectively. For the BMG sample, those symbols carry no subscript; while for the compression platens, they are labeled with a subscript (1 = upper platen and 2 = lower platen), as shown in Fig. 11. Here Π represents a dimensionless function of which the exact functional form is not known yet.

Fig. 11
figure 11

The illustrated experimental set-up for a compression test on a BMG sample

For microcompression tests, the upper platen is a diamond punch that may be assumed as a rigid body (E 1 = ∞), and the lower one is the base material, which can be regarded as an elastic half infinite space (D 1 = ∞ and H 1 = ∞) and possesses the same material properties as the micropillar. In such a case, the functional form of the α parameter is reduced to \( \alpha = \alpha \left( \nu \right) \), which only depends on the Poisson’s ratio of the BMG. Through the FE simulation, one may fit the simulated values of the α parameter to a linear function, which reads \( \alpha = {{4\left( {5.6 - 4\nu } \right)} \mathord{\left/ {\vphantom {{4\left( {5.6 - 4\nu } \right)} \pi }} \right. \kern-\nulldelimiterspace} \pi } \) [26]. Assuming an average Poisson’s ratio of ~0.35 for BMGs, the α parameter can be then estimated as around ~5. As such, the corresponding extrinsic length scale L ext can be expressed as \( L_{\text{ext}} = H + 5D \).

For regular compression tests, the α parameter is a multivariable function. For simplicity, let us assume that both upper and lower platens are made of the same material and possess the same size and geometry (E 1 = E 2, D 1 = D 2, H 1 = H 2, and ν 1 = ν 2). As such, Eq. 7 can be simplified to:

$$ \alpha = \Uppi_{1} \left( {\frac{D}{{D_{1} }},\frac{{H_{1} }}{{D_{1} }},\nu_{1} } \right)\frac{E}{{E_{1} }}\,\frac{\pi }{2} $$
(8)

In principle, FE simulations can be performed to attain a proper functional form for Π 1 that fits the elastic boundary conditions set in a real experiment as seen in [26]. After that, the corresponding extrinsic length scale L ext can be derived and then utilized for studying the size effect in a quantitative manner. Here, for the sake of demonstration, we assume the following functional form for Π 1 for a finite platen size without resorting to the FE simulations:

$$ \Uppi_{1} = \left( {\frac{D}{{D_{1} }}} \right)^{x} \left( {\frac{{H_{1} }}{{D_{1} }}} \right)^{y} \frac{{2f\left( {\nu_{1} } \right)}}{\pi } $$
(9)

where the exponent x, y and the single-variable function f are to be fitted out by FE simulations. Substituting (9) into (3a) then gives the corresponding extrinsic length scale L ext:

$$ L_{\text{ext}} = H + \left( {\frac{D}{{D_{1} }}} \right)^{x - 1} \left( {\frac{{H_{1} }}{{D_{1} }}} \right)^{y - 1} \frac{\pi E}{{4k_{\text{M}} }}f\left( {\nu_{1} } \right)D^{2} $$
(10)

in which \( k_{\text{M}} = {{\pi E_{1} D_{1}^{2} } \mathord{\left/ {\vphantom {{\pi E_{1} D_{1}^{2} } 4}} \right. \kern-\nulldelimiterspace} 4}H_{1} \) is the machine stiffness. Now, if we further assume x = y = f1) = 1, (10) is therefore simplified to:

$$ L_{\text{ext}} = H + \frac{\pi E}{{4k_{\text{M}} }}D^{2} $$
(11)

Comparing (11) to Eq. 2 in the main text, it can be easily seen that the general size-effect model described here is now reduced to the size-effect model developed by Cheng et al. [56] and their proposed shear-band instability index (S new) is equivalent to the extrinsic length scale, L ext, of a special form.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Liu, C.T. Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. J Mater Sci 47, 55–67 (2012). https://doi.org/10.1007/s10853-011-5915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5915-8

Keywords

Navigation