Skip to main content
Log in

Negative thermal expansion structures constructed from positive thermal expansion trusses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The negative thermal expansivity of a type of space frame structure is investigated herein. On the basis of space frame structure consisting of tetrahedral representative volume elements, a volumetric thermal strain, and a volumetric coefficient of thermal expansion (CTE) models are developed in this article for a special category of tetrahedron that is made from two types of materials, each for the three apex and the three base rods. Based on these models, the conditions for attaining negative volumetric thermal strain and negative coefficient of volumetric thermal expansion are established. Plotted results reveal a trend in which the extent of negative expansivity is increased for lower apex-to-base rod length and CTE ratios, and higher base rod CTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen FC, Choy CL, Young K (1980) J Polym Sci 2 Polym Phys 18:2313

    CAS  Google Scholar 

  2. Choy CL, Chen FC, Young K (1981) J Polym Sci 2 Polym Phys 19:335

    CAS  Google Scholar 

  3. Chen FC, Choy CL, Wong SP, Young K (1981) J Polym Sci 2 Polym Phys 19:971

    CAS  Google Scholar 

  4. Das D, Jacobs T, Barbour LJ (2010) Nat Mater 9:36

    Article  CAS  Google Scholar 

  5. Miller W, Smith CW, Dooling P, Burgess AN, Evans KE (2010) Compos Sci Technol 70:318

    Article  CAS  Google Scholar 

  6. Marinkovic BA, Ari M, Jardim PM, de Avillez RR, Rizzo R, Ferreira FF (2010) Thermochim Acta 499:48

    Article  CAS  Google Scholar 

  7. Sun Y, Wang C, Wen Y, Chu L, Nie M, Liu F (2010) J Am Ceram Soc 93:650

    Article  CAS  Google Scholar 

  8. Grigoriadis C, Haase N, Butt HJ, Mullen K, Floudas C (2010) Adv Mater 22:1403

    CAS  Google Scholar 

  9. Liu FS, Chen XP, Xie HX, Ao WQ, Li JQ (2010) Acta Phys Sinica 59:3350

    CAS  Google Scholar 

  10. Peng J, Liu XZ, Guo FL, Han SB, Liu YT, Chen DF, Hu Z (2010) Mater High Temp 27:151

    Article  CAS  Google Scholar 

  11. Garcia-Moreno O, Fernandez A, Khainakov S, Torrecillas R (2010) Scr Mater 63:170

    Article  CAS  Google Scholar 

  12. Yang J, Yang Y, Liu Q, Xu G, Cheng X (2010) J Mater Sci Technol 26:665

    Article  CAS  Google Scholar 

  13. Sun Y, Wang C, Wen Y, Chu L, Pan H, Nie M, Tang M (2010) J Am Ceram Soc 93:2178

    Article  CAS  Google Scholar 

  14. Evers J, Beck W, Gobel M, Jakob S, Mayer P, Oehlinger G, Rotter M, Klapoike TM (2010) Angewandte Chemie Int Ed 49:5677

    Article  CAS  Google Scholar 

  15. Lock N, Wu Y, Christensen M, Cameron LJ, Peterson VK, Bridgeman AJ, Kepert CJ, Iversen BB (2010) J Phys Chem C 114:16181

    Article  CAS  Google Scholar 

  16. Keen DA, Dove MT, Evans JSO, Goodwin AL, Peters L, Tucker MG (2010) J Phys Condens Mat 22:404202

    Article  Google Scholar 

  17. Hibble SJ, Wood GB, Bilbe EJ, Pohl AH, Tucker MG, Hannon AC, Chippindale AM (2010) Zeit Kristall 225:457

    Article  CAS  Google Scholar 

  18. Senyshyn A, Schwarz B, Lorenz T, Adamiv VT, Burak YV, Banys J, Grigalaitis R, Vasylechko L, Ehrenberg H, Fuess H (2010) J Appl Phys 108:093524

    Article  Google Scholar 

  19. Greve BK, Martin KL, Lee PL, Chupas PJ, Chapman KW, Wilkinson AP (2010) J Am Chem Soc 132:15496

    Article  CAS  Google Scholar 

  20. Peng J, Liu XZ, Guo FL, Han SB, Liu YT, Chen DF, Hu ZB (2010) Int J Miner Metall Mater 17:786

    Article  CAS  Google Scholar 

  21. Zhou Y, Neiman A, Adams S (2011) Phys Status Solid B 248:130

    Article  CAS  Google Scholar 

  22. Yang J, Liu Q, Zang C, Cheng X (2011) Adv Mater Res 117:245

    Google Scholar 

  23. Morimoto Y, Matsuda T, Fuchikawa R, Abe Y, Kamioka H (2011) J Phys Soc Jpn 80:024603

    Article  Google Scholar 

  24. Chu X, Huang R, Yang H, Wu Z, Lu J, Zhou Y, Li L (2011) Mater Sci Eng A 528:3367

    Article  Google Scholar 

  25. Miller W, Mackenzie DS, Smith CW, Evans KE (2008) Mech Mater 40:351

    Article  Google Scholar 

  26. Miller W, Smith CW, Mackenzie DS, Evans KE (2009) J Mater Sci 44:5441. doi:10.1007/s10853-009-3692-4

    Article  CAS  Google Scholar 

  27. Grima JN, Farrugia PS, Gatt R, Zammit V (2007) J Phys Soc Jpn 76:025001

    Article  Google Scholar 

  28. Grima JN, Gatt R, Ellul B (2009) J Chin Ceram Soc 37:743

    CAS  Google Scholar 

  29. Grima JN, Oliveri L, Ellul B, Gatt R, Attard D, Cicala G, Recca G (2010) Phys Status Solid Rapid Res Lett 4:133

    Article  CAS  Google Scholar 

  30. Lim TC (2011) Phys Status Solid B 248:140

    Article  CAS  Google Scholar 

  31. Grima JN, Ellul B, Attard D, Gatt R, Attard M (2010) Compos Sci Technol 70:2248

    Article  CAS  Google Scholar 

  32. Vandeperre LJ, Howlett A, Clegg WJ (2002) In: CIMTEC 2002: International conference on modern materials and technologies, vol 4, Florence

  33. Vandeperre LJ, Clegg WJ (2004) In: Furuya Y, Quandt E, Zhang Q, Inoue K (eds) Materials and devices for smart systems, vol 785. Materials Research Society, Warrendale, p 389

    Google Scholar 

  34. Smith CW, Miller W, Mackenzie DS, Evans KE (2005) Mechanism for negative thermal expansion and its links to negative Poisson’s ratio, presented at the 2nd International Workshop on Auxetic and Related Systems, Poznan

  35. Grima JN, Farrugia PS, Gatt R, Zammit V (2007) Proc Royal Soc A 463:1585

    Article  Google Scholar 

  36. Fortes AD, Suard E, Knight KS (2011) Science 331:742

    Article  CAS  Google Scholar 

  37. Grima JN, Attard D, Gatt R (2011) Science 331:687

    Article  CAS  Google Scholar 

  38. Grima JN, Attard D, Caruana-Gauci R, Gatt R (2011) Scr Mater. doi:10.1016/j.scriptamat.2011.06.011 (in press)

  39. Sleight AW (1998) Curr Opin Solid State Mater Sci 3:128

    Article  CAS  Google Scholar 

  40. Evans JSO, Hanson JC, Sleight AW (1998) Acta Cryst B54:705

    CAS  Google Scholar 

  41. Withers RL, Evans SO, Hanson J, Sleight AW (1998) J Solid State Chem 137:161

    Article  CAS  Google Scholar 

  42. Li J, Yokochi A, Amos TG, Sleight AW (2002) Chem Mater 14:2602

    Article  CAS  Google Scholar 

  43. Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG (2008) Science 319:794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci 47, 368–373 (2012). https://doi.org/10.1007/s10853-011-5806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5806-z

Keywords

Navigation