Skip to main content
Log in

Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous ZrO2–SiO2 composite sphere particles were prepared by impregnating precursor solutions into organic monolith particles, with subsequent calcination in air. The porous spheres possessed uniformly sized pores of around 10 nm. Addition of SiO2–ZrO2 decreased the ZrO2 crystallinity and increased the specific surface area. The acid amount on the surface of the composite spheres was increased by treatment with H2SO4. The acid strength and its amount, including the Lewis/Brønsted acid ratio, depended on the SiO2/ZrO2 ratio and the H2SO4 concentration. The powder treated under an optimum condition exhibited higher solid acidity than the reference solid acid catalyst. The prepared porous SO4 2−/ZrO2–SiO2 spheres showed higher saccharization activity than the reference solid acid catalyst did.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deshpande AS, Niederberger M (2007) Micropor Mesopor Mater 101:413

    Article  CAS  Google Scholar 

  2. Naydenov V, Tosheva L, Sterte J (2003) Micropor Mesopor Mater 66:321

    Article  CAS  Google Scholar 

  3. Valde′s-Solı′s T, Fuertes AB (2006) Mater Res Bull 41:2187

    Article  Google Scholar 

  4. Schuth F (2001) Chem Mater 13:3184

    Article  Google Scholar 

  5. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743

    Article  CAS  Google Scholar 

  6. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  7. Zhu K, Yue B, Zhou W, He H (2003) Chem Commun 98

  8. Yao BD, Zhang LD (1999) J Mater Sci 34:5983. doi:10.1023/A:1004780728297

    Article  CAS  Google Scholar 

  9. Orlov A, Zhai QZ, Klinowski J (2006) J Mater Sci 41:2187. doi:10.1007/s10853-006-7184-5

    Article  CAS  Google Scholar 

  10. Ma TY, Zhang XJ, Yuan ZY (2009) J Mater Sci 44:6775. doi:10.1007/s10853-009-3576-7

    Article  CAS  Google Scholar 

  11. Ecormier MA, Wilson K, Lee AF (2003) J Catal 215:57

    Article  CAS  Google Scholar 

  12. Arata K, Hino M (1990) Mater Chem Phys 26:213

    Article  CAS  Google Scholar 

  13. Arata K (1996) Appl Catal A 146:3

    Article  CAS  Google Scholar 

  14. Song X, Sayari A (1996) Catal Rev 38:329

    Article  CAS  Google Scholar 

  15. Xia Q-H, Hidajat H, Kawi S (2002) J Catal 205:318

    Article  CAS  Google Scholar 

  16. Yadav GD, Nair JJ (1999) Micropor Mesopor Mater 33:1

    Article  CAS  Google Scholar 

  17. McIntosh DJ, Kydd RA (2000) Micropor Mesopor Mater 37:281

    Article  CAS  Google Scholar 

  18. Armendariz H, Coq B, Tichit D, Dutartre R, Figueras F (1998) J Catal 173:345

    Article  CAS  Google Scholar 

  19. Parvulescu V, Coman S, Grange P, Parvulescu VI (1999) Appl Catal A Gen 176:27

    Article  CAS  Google Scholar 

  20. Hino M, Arata K (1980) J Chem Soc Chem Commun 851–852

  21. Hino M, Arata K (1979) J Am Chem Soc 101:6439

    Article  CAS  Google Scholar 

  22. Wang Y, Ma JH, Liang D, Zhou MM, Li FX, Li RF (2009) J Mater Sci 44:6736. doi:10.1007/s10853-009-3603-8

    Article  CAS  Google Scholar 

  23. Yang X, Jentoft FC, Jentoft RE, Girgsdies G, Ressler T (2002) Catal Lett 81:25

    Article  CAS  Google Scholar 

  24. Ecormier MA, Lee AF, Wilson K (2005) Micropor Mesopor Mater 80:301

    Article  CAS  Google Scholar 

  25. Sohn JR, Jang HJ (1991) J Mol Catal A 64:349

    Article  CAS  Google Scholar 

  26. Miller JB, Ko EI (1996) Chem Eng J 64:273

    CAS  Google Scholar 

  27. Navio JA, Colon G, Macias M, Campelo JM, Romero AA, Marinas JM (1996) J Catal 161:605

    Article  CAS  Google Scholar 

  28. Lopez T, Navarrete J, Gomez R, Novaro O, Figueras F, Armendariz H (1995) Appl Catal A 125:217

    Article  CAS  Google Scholar 

  29. Rosenberg DJ, Coloma F, Anderson JA (2002) J Catal 210:218

    Article  CAS  Google Scholar 

  30. Rosenberg DJ, Bachiller-Baeza B, Dines TJ, Anderson JA (2003) J Phys Chem B 107:6526

    Article  CAS  Google Scholar 

  31. Das SK, Bhunia MK, Sinha AK, Bhaumik A (2009) J Phys Chem C 113:8918

    Article  CAS  Google Scholar 

  32. Shchukin DG, Caruso RA (2004) Chem Mater 16:2287

    Article  CAS  Google Scholar 

  33. Du K-F, Yang D, Sun Y (2009) Ind Eng Chem Res 48:755

    Article  CAS  Google Scholar 

  34. Smatt J-H, Schuwer N, Jarn M, Lindner W, Linden M (2008) Micropor Mesopor Mater 112:308

    Article  CAS  Google Scholar 

  35. Shimura N, Ogawa M (2007) J Mater Sci 42:5299. doi:10.1007/s10853-007-1771-y

    Article  CAS  Google Scholar 

  36. Soriente A, Arienzo R, Rosa MD, Spinella A, Scettri A, Palombi L (1999) Green Chem 1:157

    Article  CAS  Google Scholar 

  37. Dhakshinamoorthy A, Pitchumani K (2008) Tetrahedron Lett 49:1818

    Article  CAS  Google Scholar 

  38. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787

    Article  CAS  Google Scholar 

  39. Zhang Y, Pan L, Gao C, Wang Y, Zhao Y (2010) J Sol–Gel Sci Technol 56:27

    Article  CAS  Google Scholar 

  40. Pouilleau J, Devilliers D, Groult H, Marcus P (1997) J Mater Sci 32:5645. doi:10.1023/A:1018645112465

    Article  CAS  Google Scholar 

  41. Stoch J, Lercher J, Ceckiewicz S (1992) Zeolite 12:81

    Article  CAS  Google Scholar 

  42. Zhu X, Meng Z (1994) J Appl Phys 75:3756

    Article  CAS  Google Scholar 

  43. Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E (2008) Carbon 46:196

    Article  CAS  Google Scholar 

  44. Zhuang Q, Miller JM (2001) Appl Catal A 209:L1

    Article  CAS  Google Scholar 

  45. Gomez R, Lopez T, Tzompantzi F, Garciafigueroa E, Acosta DW, Novaro O (1997) Langmuir 13:970

    Article  CAS  Google Scholar 

  46. Reddy BM, Khan A (2005) Catal Rev 47:257

    Article  CAS  Google Scholar 

  47. Tarafdar A, Panda AB, Pramanik P (2005) Microporous Mesoporous Mater 84:223

    Article  CAS  Google Scholar 

  48. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

    Article  CAS  Google Scholar 

  49. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to staff of the Center of Advanced Materials Analysis at Tokyo Institute of Technology for SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, S., Isobe, T., Matsushita, S. et al. Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment. J Mater Sci 47, 341–349 (2012). https://doi.org/10.1007/s10853-011-5803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5803-2

Keywords

Navigation