Skip to main content
Log in

Electrospinning preparation and photoluminescence properties of SrAl2O4:Ce3+ nanowires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional monoclinic SrAl2O4:Ce3+ nanowires (NWs) were prepared by the electrospinning method for the first time. By annealing PVP/SrAl2O4:Ce3+ composite nanowires (NWs) with different ratio of PVP (M w ≈ 1300000) to inorganic precursors of the electrospinning solutions, size-controllable NWs were obtained, ranging of 90–180 nm. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra, and dynamics were employed to characterize the NWs. The results demonstrate that the positions of excitation and emission bands varied uneven with the ratio of PVP to the inorganic precursors and the NWs diameter, which was attributed to the difference of the crystallinity, porosity, and local micro-structures surrounding Ce3+. Two decay time constants were observed for the PL of Ce3+, one faster (1–3 ns) and one slower (10–20 ns), which were attributed to the hole-electron capture on the luminescent ions and isolated Ce ions, respectively. It is interesting to observe that for the shorter decay process, a maximum occurred as the concentration of Ce3+ varied in the range of 1–10 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu L, Song HW, Dong B, Wang Y, Bai X, Wang GL, Liu Q (2009) J Phys Chem C 113:9609

    Article  CAS  Google Scholar 

  2. Suryamas AB, Munir MM, Iskandar F, Okuyama K (2009) J Appl Phys 105:064311

    Article  Google Scholar 

  3. Cacciotti I, Bianco A, Pezzotti G, Gusmano G (2011) Chem Eng J 166:751

    Article  CAS  Google Scholar 

  4. Wu H, Hu LB, Rowell MW, Kong DS, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Nano Lett 10:4242

    Article  CAS  Google Scholar 

  5. Tse KY, Zhang LZ, Baker SE, Nichols BM, West R, Hamers RJ (2007) Chem Mater 19:5734

    Article  CAS  Google Scholar 

  6. Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K (2008) Macromolecules 41:8000

    Article  CAS  Google Scholar 

  7. Liu ZY, Sun DD, Guo P, James OL (2007) Nano Lett 74:1081

    Article  Google Scholar 

  8. Yang DJ, Liu HW, Zheng ZF, Yuan Y, Zhao JC, Waclawik ER, Ke XB, Ke HY (2009) J Am Chem Soc 131:17885

    Article  CAS  Google Scholar 

  9. Wang FC, Liu CH, Liu CW, Chao JW, Lin CH (2009) J Phys Chem C 113:13832

    Article  CAS  Google Scholar 

  10. Dai YQ, Liu WY, Formo E, Sun YM, Xia YN (2011) Polym Adv Technol 22:326

    Article  CAS  Google Scholar 

  11. Xu L, Dong B, Wang Y, Bai X, Liu Q, Song HW (2010) Sens Actuators B Chem 147:531

    Article  Google Scholar 

  12. Zong SZ, Cao Y, Zhou YM, Ju HX (2007) Biosens Bioelectron 22:1776

    Article  CAS  Google Scholar 

  13. Jiang ZW, Guo Z, Sun B, Jia Y, Li MQ, Liu JH (2010) Sens Actuators B Chem 145:667

    Article  Google Scholar 

  14. Zhang ZY, Li XH, Wang CH, Wei LM, Liu YC, Shao CG (2009) J Phys Chem C 113:19397

    Article  CAS  Google Scholar 

  15. Yu JH, Chioi GM (2001) Sens Actuators B-Chem 75:56

    Article  Google Scholar 

  16. Korotcov AV, Huang YS, Tsai DS, Tiong KK (2006) Thin Solid Films 503:96

    Article  CAS  Google Scholar 

  17. Wei DP, Ma Y, Pan HY, Chen Q (2008) J Phys Chem C 112:8594

    Article  CAS  Google Scholar 

  18. Yu YJ, Ouyang C, Gao Y, Si ZH, Chen W, Wang ZQ, Xue G (2005) J Polym Sci Part A Polym Chem 43:6105

    Article  CAS  Google Scholar 

  19. Vasco E, Magrez A, Forro L, Setter N (2005) J Phys Chem B 109:14331

    Article  CAS  Google Scholar 

  20. Cacciotti I, Bianco A, Pezzotti G, Gusmano G (2011) Mater Chem Phys 126:532

    Article  CAS  Google Scholar 

  21. Fu ZL, Zhou SH, Zhang SY (2005) J Phys Chem B 109:14396

    Article  CAS  Google Scholar 

  22. Jung KY, Lee HW, Jung HY (2006) Chem Mater 18:2249

    Article  CAS  Google Scholar 

  23. Poort SHM, Blokpoel WP, Blasse G (1995) Chem Mater 7:1547

    Article  CAS  Google Scholar 

  24. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier TL (2005) Chem Mater 17:3904

    Article  CAS  Google Scholar 

  25. Liu Y, Xu CN (2003) J Phys Chem B 107:3991

    Article  CAS  Google Scholar 

  26. Chen JT, Gu F, Li CZ (2008) Cryst Growth Des 8:3175

    Article  CAS  Google Scholar 

  27. Chen XY, Ma C, Li XX, Shi CW, Li XL, Lu DR (2009) J Phys Chem C 113:2685

    Article  CAS  Google Scholar 

  28. Lai H, Bao A, Yang YM, Tao YC, Yang H, Zhang Y, Han LL (2008) J Phys Chem C 112:282

    Article  CAS  Google Scholar 

  29. Wang HY, Wang Y, Yang Y, Li X, Wang Ce (2009) Mater Res Bull 44:408

    Article  Google Scholar 

  30. Saha S, Chowdhury PS, Patra A (2005) J Phys Chem B 109:2699

    Article  CAS  Google Scholar 

  31. Kumar V, Pitale SS, Mishra V, Nagpure IM, Biggs MM, Ntwaeaborwa OM, Swart HC (2010) J Alloy Comp 492:L8

    Article  CAS  Google Scholar 

  32. Nyman M, Shea-Rohwer LE, Martin JE, Provencio P (2009) Chem Mater 21:1536

    Article  CAS  Google Scholar 

  33. Zhang HW, Yamada H, Terasaki N (2007) Appl Phys Lett 91:081905

    Article  Google Scholar 

  34. Im WB, Fellows NN, DenBaars SP, Seshadri R, Kim Y (2009) Chem Mater 21:2957

    Article  CAS  Google Scholar 

  35. Song HW, Yu HQ, Pan GH, Bai X, Dong B, Zhang XT, Hark SK (2008) Chem Mater 20:4762

    Article  CAS  Google Scholar 

  36. Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) J Phys Chem B 109:1663

    Article  CAS  Google Scholar 

  37. Cheng YL, Zhao Y, Zhang YF, Cao XQ (2010) J Colloid Interface Sci 344:321

    Article  CAS  Google Scholar 

  38. Lavat AE, Grasselli MC, Lovecchio EG (2010) Ceram Int 36:15

    Article  CAS  Google Scholar 

  39. Tarte P (1967) Spectrochim Acta A 237:2127

    Article  Google Scholar 

  40. Sole JG, Bausa LE, Jaque D (2005) John Wiley & Sons Ltd., New York, p 200

  41. Yu LX, Song HW, Liu ZX, Yang LM, Lu SZ, Zheng ZH (2005) J Phys Chem B 109:11450

    Article  CAS  Google Scholar 

  42. Drozdowski W, Wojtowicz AJ (2002) Nucl Instrum Meth A 408:412

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support of Distinguished Young Scholars of China (Grant no. 60925018), the National Natural Science Foundation of China (Grant nos. 50772042, 51002062, and 20971051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, R., Xu, L., Qin, W. et al. Electrospinning preparation and photoluminescence properties of SrAl2O4:Ce3+ nanowires. J Mater Sci 46, 7517–7524 (2011). https://doi.org/10.1007/s10853-011-5723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5723-1

Keywords

Navigation