Skip to main content
Log in

Equilibrium segregation of Ti to Au–sapphire interfaces

  • E-MRS MACAN
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Equilibrium segregation of Ti to Au–sapphire interfaces was measured from dewetted Au(Ti) films on the (0001) surface of sapphire. Quantitative energy dispersive spectroscopy was used to determine a Ti excess at the Au–sapphire interface of 2.2 Ti atoms/nm2, which together with an excess of 4.6 Ti atoms/nm2 at the (0001) sapphire surface, is associated with a decrease in the solid–solid Au–sapphire interface energy. Quantitative high resolution transmission electron microscopy showed that the segregated Ti is distributed within a 1.54-nm thick intergranular film at the Au–sapphire interface, which is not a bulk phase but rather an equilibrium interface state. As a result, Ti segregation without the formation of a bulk reaction at the interface is associated with a decreased interface energy, improved wetting, and may be an important part of the total complex mechanism responsible for improved wetting and spreading in “reactive” braze systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou XB, De Hosson JTM (1996) Acta Mater 44(2):421

    Article  CAS  Google Scholar 

  2. Dezellus O, Eustathopoulos N (2010) J Mater Sci 45(16):4256. doi:10.1007/s10853-009-4128-x

    Article  CAS  Google Scholar 

  3. Loehman RE (1994) Scr Metall Mater 31(8):965

    Article  CAS  Google Scholar 

  4. Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Scr Metall Mater 31(8):1109

    Article  CAS  Google Scholar 

  5. Levi G, Kaplan WD (2006) J Mater Sci 41(3):817. doi:10.1007/s10853-006-6565-0

    Article  CAS  Google Scholar 

  6. Saiz E, Tomsia AP (2005) Curr Opin Solid State Mater Sci 9(4–5):167

    Article  CAS  Google Scholar 

  7. Lipkin DM, Clarke DR, Evans AG (1998) Acta Mater 46(13):4835

    Article  CAS  Google Scholar 

  8. Nicholas MG, Mortimer DA (1985) Mater Sci Technol 1(9):657

    CAS  Google Scholar 

  9. Ghetta V, Chatain D (2002) J Am Ceram Soc 85(4):961

    Article  CAS  Google Scholar 

  10. Kapoor RR, Podszus ES, Eagar TW (1988) Scr Metall 22(8):1277

    Article  CAS  Google Scholar 

  11. Kritsalis P, Coudurier L, Eustathopoulos N (1991) J Mater Sci 26(12):3400. doi:10.1007/BF01124693

    Article  CAS  Google Scholar 

  12. Meier A, Chidambaram P, Edwards GR (1995) J Mater Sci 30(15):3791. doi:10.1007/BF01153936

    Article  CAS  Google Scholar 

  13. Gremillard L, Saiz E, Chevalier J, Tomsia AP (2004) Z Metallkd 95(4):261

    CAS  Google Scholar 

  14. Howe JM (1993) Int Mater Rev 38(5):233

    CAS  Google Scholar 

  15. Akselsen OM (1992) J Mater Sci 27(8):1989. doi:10.1007/BF01117909

    Article  CAS  Google Scholar 

  16. Frage N, Froumin N, Alzenshtein M, Kutsenko L, Fuks D, Dariel MP (2005) Curr Opin Solid State Mater Sci 9(4–5):189

    Article  CAS  Google Scholar 

  17. Li JG (1992) J Mater Sci Lett 11(23):1551

    Article  CAS  Google Scholar 

  18. Saiz E, Tomsia AP, Cannon RM (1998) Acta Mater 46(7):2349

    CAS  Google Scholar 

  19. Saiz E, Cannon RM, Tomsia AP (2000) Adv Mater 12(24):1952

    Article  CAS  Google Scholar 

  20. Saiz E, Cannon RM, Tomsia AP (2000) Acta Mater 48(18–19):4449

    Article  CAS  Google Scholar 

  21. Saiz E, Tomsia AP, Cannon RM (2001) Scr Mater 44(1):159

    Article  CAS  Google Scholar 

  22. Cannon RM, Rühle M, Hoffmann MJ, French RH, Gu H, Tomsia AP, Saiz E (2000) Adsorption and Wetting Mechanisms at Ceramic Grain Boundaries, vol 118. Grain Boundary Engineering in Ceramics. The American Ceramic Society, Westerville, OH

    Google Scholar 

  23. Derby B, Holt S (2004) Interface Sci 12(1):29

    Article  CAS  Google Scholar 

  24. Gremillard L, Saiz E, Radmilovic VR, Tomsia AP (2006) J Mater Res 21(12):3222

    Article  CAS  Google Scholar 

  25. Eustathopoulos N (1998) Acta Mater 46(7):2319

    CAS  Google Scholar 

  26. Landry K, Eustathopoulos N (1996) Acta Mater 44(10):3923

    Article  CAS  Google Scholar 

  27. Landry K, Rado C, Voitovich R, Eustathopoulos N (1997) Acta Mater 45(7):3079

    Article  CAS  Google Scholar 

  28. Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9(4–5):152

    Article  CAS  Google Scholar 

  29. Dezellus O, Hodaj F, Rado C, Barbier JN, Eustathopoulos N (2002) Acta Mater 50(5):979

    Article  CAS  Google Scholar 

  30. Dezellus O, Hodaj F, Eustathopoulos N (2003) J Eur Ceram Soc 23(15):2797

    Article  CAS  Google Scholar 

  31. Dezellus O, Hodaj F, Eustathopoulos N (2002) Acta Mater 50(19):4741

    Article  CAS  Google Scholar 

  32. Muolo ML, Ferrera E, Morbelli L, Passerone A (2004) Scr Mater 50(3):325

    Article  Google Scholar 

  33. Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45(8):2071. doi:10.1007/s10853-009-3801-4

    Article  CAS  Google Scholar 

  34. Voytovych R, Robaut F, Eustathopoulos N (2006) Acta Mater 54(8):2205

    Article  CAS  Google Scholar 

  35. Mortensen A, Drevet B, Eustathopoulos N (1997) Scr Mater 36(6):645

    Article  CAS  Google Scholar 

  36. Santella ML, Horton JA, Pak JJ (1990) J Am Ceram Soc 73(6):1785

    Article  CAS  Google Scholar 

  37. Kozlova O, Voytovych R, Eustathopoulos N (2011) Scr Mater 65(1):13

    Article  CAS  Google Scholar 

  38. Meltzman H, Chatain D, Avizemer D, Besmann TM, Kaplan WD (2011) Acta Mater 59(9):3473

    Article  CAS  Google Scholar 

  39. Luo W, Jin Z, Liu H, Wang T (2001) Calphad 25(1):19

    Article  CAS  Google Scholar 

  40. Chatain D, Chabert F, Ghetta V, Fouletier J (1993) J Am Ceram Soc 76(6):1568

    Article  CAS  Google Scholar 

  41. Pilliar RM, Nutting J (1967) Philos Mag 16(139):181

    Article  CAS  Google Scholar 

  42. Nichols FA, Mullins WW (1965) Trans Metall Soc AIME 233(10):1840

    CAS  Google Scholar 

  43. Wang Z, Wynblatt P (1998) Surf Sci 398(1–2):259

    Article  CAS  Google Scholar 

  44. Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5099. doi:10.1007/s10853-006-0437-5

    Article  CAS  Google Scholar 

  45. Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) Mater Charact 59(11):1623

    Article  CAS  Google Scholar 

  46. Baram M, Kaplan WD (2008) J Microsc 232(3):395

    Article  CAS  Google Scholar 

  47. Thust A, Coene WMJ, Op de Beeck M, Van Dyck D (1996) Ultramicroscopy 64(1–4):211

    Article  CAS  Google Scholar 

  48. Stadelmann PA (1987) Ultramicroscopy 21:131

    Article  CAS  Google Scholar 

  49. Mobus G, Rühle M (1994) Ultramicroscopy 56(1–3):54

    Article  Google Scholar 

  50. Alber U, Mullejans H, Rühle M (1997) Ultramicroscopy 69(2):105

    Article  CAS  Google Scholar 

  51. Meltzman H, Kauffmann Y, Thangadurai P, Drozdov M, Baram M, Brandon D, Kaplan WD (2009) J Microsc 236(3):165

    Article  CAS  Google Scholar 

  52. Fecht HJ, Gleiter H (1985) Acta Metall 33(4):557

    Article  CAS  Google Scholar 

  53. Keast VJ, Williams DB (2000) J Microsc 199:45

    Article  Google Scholar 

  54. Kumikov VK, Khokonov KB (1983) J Appl Phys 54(3):1346

    Article  CAS  Google Scholar 

  55. Jia CL, Lentzen M, Urban K (2004) Microsc Microanal 10(2):174

    Article  CAS  Google Scholar 

  56. Winterbottom WL (1967) Acta Metall 15(2):303

    Article  CAS  Google Scholar 

  57. Herring C (1951) In: Kingston WE (ed) The physics of powder metallurgy. McGraw-Hill, New York, p 143

    Google Scholar 

  58. Hodgson BK, Mykura H (1973) J Mater Sci 8(4):565. doi:10.1007/BF00550461

    Article  CAS  Google Scholar 

  59. Bonzel HP, Nowicki M (2004) Phys Rev B 70(24):1

    Article  Google Scholar 

  60. Levi G, Kaplan WD (2003) Acta Mater 51(10):2793

    Article  CAS  Google Scholar 

  61. McComb DW, Ning XG, Weatherly GC, Pan J, Lloyd DJ (2000) Philos Mag A Phys Condens Matter Struct Defects Mech Prop 80(11):2509

    CAS  Google Scholar 

  62. Scheu C, Dehm G, Kaplan WD (2001) J Am Ceram Soc 84(3):623

    Article  CAS  Google Scholar 

  63. Avishai A, Scheu C, Kaplan WD (2003) Z Metallkd 94(3):272

    CAS  Google Scholar 

  64. Avishai A, Kaplan WD (2004) Z Metallkd 95(4):266

    CAS  Google Scholar 

  65. Avishai A, Scheu C, Kaplan WD (2005) Acta Mater 53(5):1559

    Article  CAS  Google Scholar 

  66. Baram M, Kaplan WD (2006) J Mater Sci 41(23):7775. doi:10.1007/s10853-006-0897-7

    Article  CAS  Google Scholar 

  67. Brydson R, Chen S-C, Riley FL, Milne SJ, Pan X, Rühle M (1998) J Am Ceram Soc 81(2):369

    Article  CAS  Google Scholar 

  68. Dillon SJ, Harmer MP (2007) J Am Ceram Soc 90(3):996

    Article  CAS  Google Scholar 

  69. Clarke DR (1987) J Am Ceram Soc 70(1):15

    Article  CAS  Google Scholar 

  70. Avishai A, Kaplan WD (2005) Acta Mater 53(5):1571

    Article  CAS  Google Scholar 

  71. Tang M, Carter WC, Cannon RM (2006) Phys Rev B 73(2):024102

    Article  Google Scholar 

  72. Tang M, Carter WC, Cannon RM (2006) J Mater Sci 41(23):7691. doi:10.1007/s10853-006-0608-4

    Article  CAS  Google Scholar 

  73. Baram M, Chatain D, Kaplan WD (2011) Science 332(6026):206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Katz for technical assistance, and D. Chatain, P. Wynblatt, and W.C. Carter for stimulating discussions. H.M. acknowledges support from the Women in Science program of the Israel Ministry of Science and an Ilan Ramon scholarship. This study was supported by the Israel Science Foundation (#163/05) and the Russell Berrie Nanotechnology Institute at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nussbaum, E., Meltzman, H. & Kaplan, W.D. Equilibrium segregation of Ti to Au–sapphire interfaces. J Mater Sci 47, 1647–1654 (2012). https://doi.org/10.1007/s10853-011-5707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5707-1

Keywords

Navigation