Skip to main content
Log in

Strong, low density, hexylene- and phenylene-bridged polysilsesquioxane aerogel–polycyanoacrylate composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposite aerogels were prepared by chemical vapor deposition and polymerization of cyanoacrylate on the surface of bridged polysilsesquioxane aerogels. Phenylene- and hexylene-bridged aerogels were prepared by sol–gel polymerizations and supercritical carbon dioxide drying. Hydrophobic organic bridging groups in the polysilsesquioxane aerogels reduced the amount of adsorbed water available for initiating polymerizations and led to higher molecular weight polycyanoacrylate than was observed with silica aerogels. Densities increased as much as 65% due to the addition of the organic polymer, but the nanocomposite aerogels remained highly porous with surface areas between 440 and 750 m2/g. Polycyanoacrylate–phenylene-bridged aerogel composites were the strongest with flexural strengths up to 780 kPa or 16-fold stronger than the untreated phenylene-bridged aerogels and fivefold stronger than a silica aerogel of the same density. The strongest polycyanoacrylate–hexylene-bridged aerogel composites had flexural strength of 285 kPa or ninefold stronger than the untreated hexylene-bridged aerogels and twice as strong as a silica aerogel of comparable density. The greater strength of the new composites is, in part, due to the greater strength of the bridged aerogels. However, higher molecular weight polycyanoacrylate, due to less surface water on the hydrophobic bridged aerogels, also contributes to the greater nanocomposite strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Only two data points are shown for the mechanical properties of various density silica aerogels [17] with in the density range in Fig. 2. The plot extends to silica aerogels with densities as high as 0.215 g/cc, but to adequately show the mechanical properties of the bridged composites, the density range was reduced.

References

  1. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243

    Article  CAS  Google Scholar 

  2. Fricke J, Lu X, Wang P, Buttner D, Heineman U (1992) Int J Heat Mass Transf 35:2305

    Article  CAS  Google Scholar 

  3. Forest L, Gibiat V, Woignier T (1998) J Non Cryst Solid 225:287

    Article  CAS  Google Scholar 

  4. Xiao X, Streiter R, Wolf H, Ruan G, Murray G, Gessner T (2001) Microelectron Eng 55:53

    Article  CAS  Google Scholar 

  5. Mammeri F, Le Bourhis E, Rozes L, Sanchez CL (2005) J Mater Chem 15:3787

    Article  CAS  Google Scholar 

  6. Zhang Z, Shen J, Ni X, Wu G, Zhao B, Yang B, Gu X, Qian M, Wu Y (2006) J Macromol Sci Part A Pure Appl Chem 43:1663

    Article  CAS  Google Scholar 

  7. Meador MAB, Vivod SL, McCorkle L, Quade D, Sullivan RM, Ghosn LJ, Clark N, Capadona LA (2008) J Mater Chem 18:1843

    Article  CAS  Google Scholar 

  8. Fidalgo A (2007) Chem Mater 19:2603

    Article  CAS  Google Scholar 

  9. Harris MT, Knobbe ET (1996) J Mater Sci Lett 15:132

    Article  CAS  Google Scholar 

  10. Einarsrud M-A, Nilsen E (1998) J Non Cryst Solids 226:122

    Article  CAS  Google Scholar 

  11. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957

    Article  CAS  Google Scholar 

  12. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Chem Mater 17:1085

    Article  CAS  Google Scholar 

  13. Leventis N (2007) Acc Chem Res 40:874

    Article  CAS  Google Scholar 

  14. Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MAB, Leventis N (2004) J Non-Cryst Solids 350:152

    Article  CAS  Google Scholar 

  15. Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247

    Article  CAS  Google Scholar 

  16. Boday DJ, DeFriend KA, Wilson KV, Coder D, Loy DA (2008) Chem Mater 20:2845

    Article  CAS  Google Scholar 

  17. Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT, DeFriend-Obrey KA, Loy DA (2009) ACS Appl Mater Interfaces 1:1364

    Article  CAS  Google Scholar 

  18. Loy DA, Shea KJ (1995) Chem Rev 95:1431

    Article  CAS  Google Scholar 

  19. Shea KJ, Loy DA, Webster O (1992) J Am Chem Soc 114:6700

    Article  CAS  Google Scholar 

  20. Shea KJ, Loy DA (2001) Chem Mater 13:3306

    Article  CAS  Google Scholar 

  21. Small JH, Shea KJ, Loy DA (1993) J Non Cryst Solids 160:234

    Article  CAS  Google Scholar 

  22. Corriu RJP, Moreau JJE, Thepot P, Wong Chi Man M (1992) Chem Mater 4:1217

    Article  CAS  Google Scholar 

  23. Loy DA, Shea KJ, Russick EM (1992) Mater Res Soc Symp Proc 271 (Better Ceramics through Chemistry V), 699

  24. Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) J Non Cryst Solids 186:44

    Article  CAS  Google Scholar 

  25. van Bommel MJ, de Haan AB (1994) J Mater Sci 29:943. doi:10.1007/BF00351414

    Article  Google Scholar 

  26. Nguyen BN, Meador MAB, Tousley ME, Shonkwiler B, McCorkle L, Scheiman DA, Palczer A (2009) ACS Appl Mater Interfaces 1:621

    Article  CAS  Google Scholar 

  27. Meador MAB, Weber A, Hindi A, Naumenko M, McCorkle L, Quade D, Vivod SL, Gould GL, White S, Deshpande K (2009) ACS Appl Mater Interfaces 1:894

    Article  CAS  Google Scholar 

  28. Sharp KG, Michalczyk MJ (1997) J Sol Gel Sci Technol 8:541

    CAS  Google Scholar 

  29. Hobson ST, Shea KJ (1997) Chem Mater 9:616

    Article  CAS  Google Scholar 

  30. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258

    Article  CAS  Google Scholar 

  31. Hayashi S, Hayamizu K (1991) Bull Chem Soc Jpn 64:685

    Article  CAS  Google Scholar 

  32. Brinker CJ, Scherer GW, Roth EP (1985) J Non Cryst Solids 72:345

    Article  CAS  Google Scholar 

  33. Blomberg S, Ostberg S, Harth E, Bosman AW, Horn BV, Hawker CJ (2002) J Polym Sci Part A Polym Chem 40:1309

    Article  CAS  Google Scholar 

  34. Loy DA, Carpenter JP, Alam TM, Shaltout R, Dorhout PK, Greaves J, Small JH, Shea KJ (1999) J Am Chem Soc 121:5413

    Article  CAS  Google Scholar 

  35. El Rassy H, Buisson P, Bouali B, Perrard A, Pierre AC (2003) Langmuir 19:358

    Article  CAS  Google Scholar 

  36. American Society for Testing and Materials, test method C1684

  37. Woignier T, Phalippou J (1988) J Non Cryst Solids 100:404

    Article  CAS  Google Scholar 

  38. Takahashi R, Sato S, Sodesawa T, Goto T, Matsutani K, Mikami N (2005) Mater Res Bull 40:1148

    Article  CAS  Google Scholar 

  39. Ryan B, McCann G (1996) Macromol Rapid Commun 17:217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Energy Materials Corp. for supporting this study. We also thank the University of Arizona, Marcus Perry and Mike Read from the Chemistry Instrumentation and Electronics Facility, University Spectroscopy and Imaging Facility, Mass Spectroscopy Facility, and Brian Cherry from the Department of Chemistry at Arizona State University for solids NMR work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Loy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boday, D.J., Stover, R.J., Muriithi, B. et al. Strong, low density, hexylene- and phenylene-bridged polysilsesquioxane aerogel–polycyanoacrylate composites. J Mater Sci 46, 6371–6377 (2011). https://doi.org/10.1007/s10853-011-5584-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5584-7

Keywords

Navigation