Skip to main content
Log in

Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of heat treatment temperature on crystallisation behaviour, precipitated phases and thermo-mechanical properties of some MgO–Al2O3–SiO2 (MAS) glass-ceramics were investigated. Crystallisation behaviour of MgO–Al2O3–SiO2 glasses in the presence of TiO2 as a nucleation agent was studied. The crystalline phases present in the heat treated samples were identified by X-ray diffraction (XRD). It was observed from XRD studies that magnesium aluminium titanate initially precipitated and when the heat treatment temperature was increased to 1140 °C, depending on the thermal history, either magnesium silicate, aluminium titanate and quartz or magnesium aluminium titanate, magnesium aluminate and quartz were precipitated. SEM observation revealed that the heat treatment led to phase separation of droplet-shaped crystals before the needle-shaped crystals formed at 1140 °C. The effect of annealing temperature on the density and mechanical properties of these glass-ceramic were characterised by nanoindentation and the results revealed a significant increase in hardness of the fully crystallised system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lawrence CW, Briggs GAD (1993) J Mater Sci 28:3645. doi:https://doi.org/10.1007/BF01159848

    Article  CAS  Google Scholar 

  2. Reich CH, Brückner R (1997) Compos Sci Technol 57:533

    Article  CAS  Google Scholar 

  3. Yilmaz R, Taylor R (2007) J Mater Sci 42:4115. doi:https://doi.org/10.1007/s10853-007-1656-0

    Article  CAS  Google Scholar 

  4. Ahn JM, Mall S (2009) Int J Appl Ceram Technol 6(1):45

    Article  CAS  Google Scholar 

  5. Shao H, Liang K, Zhou F, Wang G, Hu A (2005) Mater Res Bull 40:499

    Article  CAS  Google Scholar 

  6. Wange P, Höche T, Rüssel C, Schnapp JD (2002) J Non-Cryst Solids 298:137

    Article  CAS  Google Scholar 

  7. Owate IO, Freer R (1990) J Mater Sci 25:5291. doi:https://doi.org/10.1007/BF00580163

    Article  CAS  Google Scholar 

  8. Gupta PK (1988) In: Bunsell AR (ed) Fibre reinforcements for composite materials, Elsevier, Amsterdam

  9. McMillan PW (1979) Glass-ceramic. Academic, London

    Google Scholar 

  10. Strand Z (1986) Glass-ceramic materials. Elsevier, Amsterdam

    Google Scholar 

  11. Hwang SP, Wu JM (2001) J Am Ceram Soc 84:1108

    Article  CAS  Google Scholar 

  12. Gregory AG, Veasay TJ (1973) J Mater Sci 8(3):324. doi:https://doi.org/10.1007/BF00550151

    Article  Google Scholar 

  13. Rawson H (1988) Properties and applications of glass. Elsevier, New York

    Google Scholar 

  14. Ashbee KHG (1973) J Mater Sci 10:911. doi:https://doi.org/10.1007/BF00823206

    Article  Google Scholar 

  15. Onishi M, Kyoto M, Watanabe M (1991) J Appl Phys 30(6A):988

    Article  Google Scholar 

  16. Sakamoto A, Yamamoto S (2003) J Mater Sci 38:2305. doi:https://doi.org/10.1023/A:1023920110755

    Article  CAS  Google Scholar 

  17. Goswami M, Mirza T, Sarkar A, Manikandan S, Sangeeta SL, Verma KR, Gurumurthy VK, Shrikhande Kothiyal GP (2001) Bull Mater Sci 23(5):377

    Article  Google Scholar 

  18. Halváč J (1983) The technology of glass and ceramic: an introduction. Elsevier, Amsterdam

    Google Scholar 

  19. Zdaniewski W (1973) J Mater Sci 8:192. doi:https://doi.org/10.1007/BF00550667

    Article  CAS  Google Scholar 

  20. Goel A, Shaaban ER, Melo FCL, Ribeiro MJ, Ferreira JMF (2007) J Non-Cryst Solids 353:2383

    Article  CAS  Google Scholar 

  21. Shao H, Liang K, Peng F (2004) Ceram Int 30:927

    Article  CAS  Google Scholar 

  22. Weaver DT, Van Aken DC, Smith JD (2004) J Mater Sci 39:51. doi:https://doi.org/10.1023/B:JMSC.0000007727.10682.b6

    Article  CAS  Google Scholar 

  23. Quyang XQ, Xiao ZH, Lu AX (2009) Advc Appl 108:178

    Google Scholar 

  24. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  Google Scholar 

  25. Doerner MF, Nix WD (1986) J Mater Res 1:601

    Article  Google Scholar 

  26. Amista P, Cesari M, Montena A, Gnappi G, Lan L (1995) J Non-Cryst Solids 192&193:529

    Article  CAS  Google Scholar 

  27. Shyu JJ, Wu JM (1991) J Mater Sci Lett 10:1056

    Article  CAS  Google Scholar 

  28. Minsheng M, Wen N, Yali W, Zhongjie W, Fengmei L (2008) J Non-Cryst Solids 354:5395

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to Mr Dean Haylock, Miss Bev Lane, Mr Philip Staton and Mr Pete Bailey for their technical assistance with glass melting, thermal analysis, sample preparation and technical advice. ZS would like to thank Universiti Teknikal Malaysia Melaka for granting her concession and study leave to undertake her PhD degree. The authors also wish to acknowledge Alstom (Areva) for the use of DTA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Shamsudin or A. Hodzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamsudin, Z., Hodzic, A., Soutis, C. et al. Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures. J Mater Sci 46, 5822–5829 (2011). https://doi.org/10.1007/s10853-011-5538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5538-0

Keywords

Navigation