Skip to main content

Advertisement

Log in

Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The strain and stress build-up in 20-keV He-implanted UO2 single crystals have been determined by means of X-ray diffraction through reciprocal space mapping, with the use of a model dedicated to the analysis of the strain/stress state of ion-irradiated materials. Results indicate that the undamaged part of the crystals exhibits no strain or stress; on the other hand, the implanted layer undergoes a tensile strain directed along the normal to the surface of the crystals and a compressive in-plane stress. The build-up of both strain and stress with He fluence exhibits a two-step process: (i) a progressive increase up to a maximum level of ~1% for the strain and ~−2.8 GPa for the stress, followed by (ii) a dramatic decrease. The origin of the strain and stress build-up is the formation of both self-interstitial defects and small He-vacancy clusters. The strain, and stress relief is tentatively attributed to the formation of extended defects (such as dislocations) that induce a plastic relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yun Y, Eriksson O, Oppeneer PM (2009) J Nucl Mater 385:510

    Article  CAS  Google Scholar 

  2. Guilbert S, Sauvage T, Garcia P, Carlot G, Barthe MF, Desgardin P, Blondiaux G, Corbel C, Piron JP, Gras JM (2004) J Nucl Mater 327:88

    Article  CAS  Google Scholar 

  3. Sattonnay G, Garrido F, Thomé L (2004) Philos Mag Lett 84:109

    Article  CAS  Google Scholar 

  4. Sattonnay G, Vincent L, Garrido F, Thomé L (2006) J Nucl Mater 355:131

    Article  CAS  Google Scholar 

  5. Garrido F, Vincent L, Nowicki L, Sattonnay G, Thomé L (2008) Nucl Instrum Methods Phys Res Sect B 266:2842

    Article  CAS  Google Scholar 

  6. Weber WJ (1983) J Nucl Mater 114:213

    Article  CAS  Google Scholar 

  7. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York. SRIM program can be downloaded at https://doi.org/www.srim.org

  8. Soullard J (1985) J Nucl Mater 135:190

    Article  CAS  Google Scholar 

  9. Matzke H, Lucuta PG, Wiss T (2000) Nucl Instrum Methods Phys Res Sect B 166–167:920

    Article  Google Scholar 

  10. Boulle A, Masson O, Guinebretière R, Lecomte A, Dauger A (2002) J Appl Crystallogr 35:606

    Article  CAS  Google Scholar 

  11. Debelle A, Declémy A (2010) Nucl Instrum Methods Phys Rese Sect B 268:1460

    Article  CAS  Google Scholar 

  12. Dederichs PH (1973) J Phys F 3:471

    Article  CAS  Google Scholar 

  13. Matzke H, Turos A, Linker G (1994) Nucl Instrum Methods Phys Res Sect B 91:294

    Article  CAS  Google Scholar 

  14. Emoto T, Ghatak J, Satyam PV, Akimoto K (2009) J Appl Phys 106:043516

    Article  Google Scholar 

  15. Debelle A, Declémy A, Vincent L, Garrido F, Thomé L (2009) J Nucl Mater 396:240

    Article  Google Scholar 

  16. Boulle A, Debelle A (2010) J Appl Crystallogr 43:1046

    Article  CAS  Google Scholar 

  17. Sousbie N, Capello L, Eymery J, Lagahe Ch, Rieutord F (2006) J Appl Phys 99:103509

    Article  Google Scholar 

  18. Velisa G, Debelle A, Vincent L, Thomé L, Declémy A, Pantelica D (2010) J Nucl Mater 402:87

    Article  CAS  Google Scholar 

  19. Leclerc S, Beaufort MF, Declémy A, Barbot JF (2008) Appl Phys Lett 93:122101

    Article  Google Scholar 

  20. Rao SI, Houska CR (1990) J Mater Sci 25:2822

    Article  CAS  Google Scholar 

  21. Speriosu VS (1981) J Appl Phys 52:6094

    Article  CAS  Google Scholar 

  22. Wachtman JB Jr, Wheat ML, Anderson HJ, Bates JL (1965) J Nucl Mater 16:39

    Article  CAS  Google Scholar 

  23. Weber WJ (1981) J Nucl Mater 98:206

    Article  CAS  Google Scholar 

  24. Hj Matzke (1992) J Nucl Mater 189:141

    Article  Google Scholar 

  25. MacNeal BE, Speriosu VS (1981) J Appl Phys 59:3235

    Google Scholar 

  26. Speriosu VS, Paine BM, Nicolet M-A, Glass HL (1982) Appl Phys Lett 40:604

    Article  CAS  Google Scholar 

  27. Sickafus KE, Matzke Hj, Hartmann Th, Yasuda K, Valdez JA, Chodak P III, Nastasi M, Verall RA (1999) J Nucl Mater 274:66

    Article  CAS  Google Scholar 

  28. Moll S, Thomé L, Sattonnay G, Debelle A, Vincent L, Garrido F, Jagielski J (2009) J Appl Phys 106:073509

    Article  Google Scholar 

  29. Debelle A, Moll S, Décamps B, Thomé L, Sattonnay G, Garrido F, Jozwik I, Jagielski J (2010) Scripta Mater 63:665

    Article  CAS  Google Scholar 

  30. Spino J, Papaioannou D (2000) J Nucl Mater 281:146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ion implantation was performed with the IRMA implantor of the CSNSM-Orsay, and we are thus grateful to the Semiramis staff for their help during these implantations. This study is supported by the Programme sur l’Aval du Cycle et l’Energie Nucléaire (PACEN), and it was partially financed by the “Groupement National de Recherche” (GNR) MATINEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Debelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debelle, A., Boulle, A., Garrido, F. et al. Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study. J Mater Sci 46, 4683–4689 (2011). https://doi.org/10.1007/s10853-011-5375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5375-1

Keywords

Navigation