Skip to main content
Log in

On the thermal stability of the copper–titanium–zirconium phosphate solid-solution series: CuTi2−xZrx(PO4)3 (0 ≤ x ≤ 2) under air

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solid copper(I) electrolytes: CuTi2(PO4)3; CuTiZr(PO4)3; and CuZr2(PO4)3; were prepared as powders by high temperature synthesis and analysed by powder XRD. These materials were then annealed in air at 400 °C for 72 h. The results of powder XRD showed that the degree of oxidation under these conditions varies progressively and enormously across this series, with the passivity dependent upon the Ti/Zr ratio; CuTi2(PO4)3 being the least reactive under these conditions. The results of the thermogravimetric analyses in artificial air (\( P_{{{\text{O}}_{2} }} \) = 0.2 bar) corroborate with the above, and reveal in all cases that Teqm = 500 ± 25 °C for the reversible reaction: 4Cu (Ti, Zr)2(PO4)3 + O2 ⇆ 4Cu0.5 (Ti, Zr)2(PO4)3 + 2CuO. Green Cu0.5TiZr (PO4)3 has been prepared as a new compound and was shown to belong to a rhombohedral system with hexagonal cell constants: a = 8.599(1) Å; c = 22.355(3) Å; Z = 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hong HY-P (1976) Mater Res Bull 11:173

    Article  CAS  Google Scholar 

  2. Yao PC, Fray DJ (1983) Solid State Ionics 8:35

    Article  CAS  Google Scholar 

  3. Davidson AJ, Fray DJ (2000) Solid State Ionics 136–137:613

    Article  Google Scholar 

  4. Oudet F, Vejux A, Kompany T, Bordes E, Courtine P (1989) Mater Res Bull 24:561

    Article  CAS  Google Scholar 

  5. Kousuke Y, Yoshihiro A (2000) Mater Res Bull 35:211

    Article  Google Scholar 

  6. Mbandza A, Bordes E, Courtine P (1985) Mater Res Bull 20:251

    Article  CAS  Google Scholar 

  7. Berry FJ, Oates G, Smart LE, Vithal M, Cook R, Ricketts HG, Williams R, Marco JF (1992) Polyhedron 11:2543

    Article  CAS  Google Scholar 

  8. Warner TE, Milius M, Maier J (1992) Ber Bunsenges Phys Chem 96:1607

    Article  CAS  Google Scholar 

  9. Jazouli AE, Soubeyroux JL, Dance JM, Flem GL (1986) J Solid State Chem 65:351

    Article  Google Scholar 

  10. Jazouli AE, Alami M, Brochu R, Dance JM, Flem GL, Hagenmuller P (1987) J Solid State Chem 71:444

    Article  Google Scholar 

  11. Polles GL, Jazouli AE, Olazcuaga R, Dance JM, Flem GL, Hagenmuller P (1987) Mater Res Bull 22:1171

    Article  Google Scholar 

  12. Bussereau I, Olazcuaga R, Flem GL, Hagenmuller P (1989) Eur J Solid State Inorg Chem 26:383

    CAS  Google Scholar 

  13. Christensen E, Barner JH, Engell J, Bjerrum HJ (1990) J Mater Sci 25:4060. doi:https://doi.org/10.1007/BF00582482

    Article  CAS  Google Scholar 

  14. Bussereau I, Belkhiria MS, Gravereau P, Boireau A, Soubeyroux JL, Olazcuagal R, Flem GL (1992) Acta Cryst C 48:1741

    Article  Google Scholar 

  15. Christensen RH-W, Warner TE (2006) J Mater Sci 41:1197. doi:https://doi.org/10.1007/s10853-005-3657-1

    Article  Google Scholar 

  16. Warner TE, Edwards PP, Fray DJ (1991) Mater Sci Eng B8:219

    Article  CAS  Google Scholar 

  17. Boultif A, Louer D (2004) J Appl Cryst 37:724

    Article  CAS  Google Scholar 

  18. McCarron EM, Calabrese JC, Subramanian MA (1987) Mater Res Bull 22:1421

    Article  CAS  Google Scholar 

  19. Olazcuaga R, Flem GL, Boireau A, Soubeyroux JL (1994) Adv Mater Res 1:177

    Article  Google Scholar 

  20. Taoufik I, Haddad M, Nadiri A, Brochu R, Berger R (1999) J Phys Chem Solids 60:701

    Article  CAS  Google Scholar 

  21. Mbandza A, Bordes E, Courtine P, Jazouli AE, Soubeyroux JL, Flem GL, Hagenmuller P (1988) React Solid 5:315

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Andrew Bond for assistance with indexing the powder X-ray diffraction patterns for CuTiZr(PO4)3 and Cu0.5TiZr(PO4)3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Warner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, T.E., Skou, E.M. On the thermal stability of the copper–titanium–zirconium phosphate solid-solution series: CuTi2−xZrx(PO4)3 (0 ≤ x ≤ 2) under air. J Mater Sci 46, 4622–4629 (2011). https://doi.org/10.1007/s10853-011-5364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5364-4

Keywords

Navigation