Skip to main content
Log in

Ag nanoclusters synthesized by successive ionic layer deposition method and their characterization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The possibilities of successive ionic layer deposition technology for synthesizing the Ag nanoclusters and nanolayers were analyzed in present article. It was shown that this technology, based on successive treatments of appropriate substrates in solution of cations and anions, is acceptable for the controllable forming of the Ag nanoparticles at the surface of different substrates. Results related to characterization of the Ag nanoclusters synthesized using Ag(NH3)2NO3 or AgNO3 precursors were discussed. It was found that the concentration and the size of the Ag nanoparticles deposited on a surface of fused quartz, silica gel, and monocrystalline silicon can be controlled by varying composition and pH of the reagent solutions as well as the number of the deposition cycles. It was established that the size of Ag nanoclusters depending on a synthesis conditions may vary from 1–5 nm to 500 nm. Model explained the growth of Ag clusters during successive ionic layer deposition was discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Imamura S, Ikebata M, Ito T, Ogita T (1991) Ind Eng Chem Res 30:217

    Article  CAS  Google Scholar 

  2. Gulari E, Guldur C, Osuwan S, Srivannavit S (1999) Appl Catal A 182:147

    Article  CAS  Google Scholar 

  3. Luo M, Yuan X, Zheng X (1998) Appl Catal A 175:121

    Article  CAS  Google Scholar 

  4. Xu J, Wei XW, Song XJ, Lu XJ, Ji CC, Ni YH, Zhao GC (2007) J Mater Sci 42:6972. doi:https://doi.org/10.1007/s10853-006-1307-x

    Article  CAS  Google Scholar 

  5. Sato T, Goto S, Tang Q, Shu Y (2008) J Mater Sci 43:2247. doi:https://doi.org/10.1007/s10853-007-1960-8

    Article  CAS  Google Scholar 

  6. You X, Chen F, Zhang J, Anpo M (2005) Catal Lett 102(3–4):247

    Article  CAS  Google Scholar 

  7. Song Y, Cui K, Wang L, Chen S (2009) Nanotechnology 20:105501

    Article  CAS  Google Scholar 

  8. Zhang J, Miremadi BK, Colbow KJ (1994) Mater Sci Lett 13:1048

    Article  CAS  Google Scholar 

  9. Tong MS, Dai GR, Wu YD, Gao DS (2000) J Mater Sci Mater Electron 11:661

    Article  CAS  Google Scholar 

  10. Yamazoe N (1991) Sens Actuators B 5:7

    Article  CAS  Google Scholar 

  11. Lu F, Chen S, Peng S (1998) Sens Actuators B 50:220

    Article  CAS  Google Scholar 

  12. Zhang J, Colbow K (1997) Sens Actuators B 40:47

    Article  CAS  Google Scholar 

  13. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) J Mater Sci 43:5115. doi:https://doi.org/10.1007/s10853-008-2745-4

    Article  CAS  Google Scholar 

  14. Badr Y, Mahmoud MA (2006) J Mater Sci 41:3947. doi:https://doi.org/10.1007/s10853-005-5502-y

    Article  CAS  Google Scholar 

  15. Alammar T, Mudring AV (2009) J Mater Sci 44:3218. doi:https://doi.org/10.1007/s10853-009-3429-4

    Article  CAS  Google Scholar 

  16. Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F (2010) J Mater Sci 45:5865. doi:https://doi.org/10.1007/s10853-010-4663-5

    Article  CAS  Google Scholar 

  17. Douani R, Si-Larbi K, Hadjersi T, Megouda N, Manseri A (2008) Phys Status Solidi (a) 205(2):225

    Article  CAS  Google Scholar 

  18. Hadjersi T, Gabouze N (2007) Phys Status Solidi (c) 4(6):2155

    Article  CAS  Google Scholar 

  19. Tsujino K, Matsumura M (2007) Electrochim Acta 53:28

    Article  CAS  Google Scholar 

  20. Jiu J, Murai K, Kim D, Kim K, Suganuma K (2009) Mater Chem Phys 114:333

    Article  CAS  Google Scholar 

  21. Qiu T, Wu XL, Shen JC, Ha PCT, Chu PK (2006) Nanotechnology 17:5769

    Article  CAS  Google Scholar 

  22. Pierson JF, Rousselot C (2005) Surf Coat Technol 200(1–4):276

    Article  CAS  Google Scholar 

  23. Jimenez JA, Lysenko S, Zhang G, Liu H (2007) J Mater Sci 42:1856. doi:https://doi.org/10.1007/s10853-006-0898-6

    Article  CAS  Google Scholar 

  24. Uznanski P, Bryszewska E (2010) J Mater Sci 45:1547. doi:https://doi.org/10.1007/s10853-009-4122-3

    Article  CAS  Google Scholar 

  25. Biju V, Sugathan N, Vrinda V, Salini SL (2008) J Mater Sci 43:1175. doi:https://doi.org/10.1007/s10853-007-2300-8

    Article  CAS  Google Scholar 

  26. Zhou QF, Xu Z (2004) J Mater Sci 39:2487. doi:https://doi.org/10.1023/B:JMSC.0000020014.82696.85

    Article  CAS  Google Scholar 

  27. Zhang W, Qiao X, Chen J (2007) Mater Sci Eng B 142:1

    Article  CAS  Google Scholar 

  28. Fukui K, Nakane M (1995) Sens Actuators B 25:486

    Article  CAS  Google Scholar 

  29. Salama T, Ohnishi R, Shido T, Ichikawa MJ (1996) J Catal 162:169

    Article  CAS  Google Scholar 

  30. Decher G, Schlenoff JB (eds) (2003) Multilayer thin films. Wiley-VCH, New York

    Google Scholar 

  31. Korotcenkov G, Tolstoy V, Schwank J (2006) Meas Sci Technol 17:1861

    Article  CAS  Google Scholar 

  32. Korotcenkov G, Cho BK, Han SD, Tolstoy V (2009) Process Appl Ceram (Serbia) 3(1–2):19

    Article  CAS  Google Scholar 

  33. Tolstoy V (2006) Russ Chem Rev 75:161

    Article  CAS  Google Scholar 

  34. Tolstoy VP, Murin IV, Reller A (1997) Appl Surf Sci 112:255

    Article  CAS  Google Scholar 

  35. Tolstoy VP (1997) Thin Solid Films 307:10

    Article  CAS  Google Scholar 

  36. Tsujino K, Matsumura M (2006) Sol Energy Mater Sol Cells 90(10):1527

    Article  CAS  Google Scholar 

  37. Frantz P, Granick S (1992) Langmuir 8:1176

    Article  CAS  Google Scholar 

  38. Karpov SV, Popov AK, Slabko VV, Shevnina GB (1995) Colloid J 57(2):199

    Google Scholar 

  39. Ershov BG, Janata E, Henglein A, Fojtik AJ (1993) Phys Chem 97:4589

    Article  CAS  Google Scholar 

  40. Tolstoy VP, Tolstobrov EV, Gulina LB (2002) Vestnik SPbGU (Ser 4) 3(20):120 (in Russian)

    Google Scholar 

  41. Janata E, Henglein A, Ershov BG (1994) J Phys Chem 98:10888

    Article  CAS  Google Scholar 

  42. Korotcenkov G, Macsanov V, Tolstoy V, Brinzari V, Schwank J, Faglia G (2003) Sens Actuators B 96:602

    Article  CAS  Google Scholar 

  43. Witten TA, Sander LM (1981) Phys Rev Lett 47:1400

    Article  CAS  Google Scholar 

  44. Meakin P (1983) Phys Rev Lett 51:1119

    Article  Google Scholar 

  45. Ledo A, Martinez F, Lopez-Quintela MA, Rivas J (2007) Physica B 398:273

    Article  CAS  Google Scholar 

  46. Guillen-Villafuente O, Garcia G, Anula B, Pastor E, Blanco MC, Lopez-Quintela MA, Hernandez-Creus A, Planes GA (2006) Angew Chem Int Ed 45:4266

    Article  CAS  Google Scholar 

  47. Lai X, St Clair TP, Valden M, Goodman DW (1998) Prog Surf Sci 59:25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for Basic Research (RFBR) (Grant # 09-03-00892a), by the Korea Science and Engineering Foundation (KOSEF) grant funded by Ministry of Education, Science and Technology (MEST) (No. 2009-0078928), and by the World Class University (WCU) program at GIST through a grant provided by MEST, Korea (No. R31-20008-000-10026-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Korotcenkov or B. K. Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulina, L.B., Korotcenkov, G., Cho, B.K. et al. Ag nanoclusters synthesized by successive ionic layer deposition method and their characterization. J Mater Sci 46, 4555–4561 (2011). https://doi.org/10.1007/s10853-011-5350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5350-x

Keywords

Navigation