Skip to main content
Log in

TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cell durability is a crucial technological issue for SOFC commercialization, and considerable progress has been made in recent years. A number of degradation pathways have been established, amongst which microstructural changes, poisoning effects and formation of less conductive phases. In this study, transmission electron microscopy was used to observe submicron-scale effects on selected cathode zones of an anode supported cell tested in SOFC stack repeat element configuration. The test has been performed with a dedicated segmented test bench, at 800 °C for 1900 h, which allowed to spatially resolve degradation processes, and therefore to improve their correlation with localized post-test analysis. Evidence is presented of reaction products (mainly SrZrO3) at the LSM/YSZ interfaces as well as of contaminants, in particular Cr, but also Si. A polarized cell segment is compared to an unpolarized one, to assess any influence of cathode polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) J Power Sour 182(2):400

    Article  CAS  Google Scholar 

  2. Adler SB (2004) Chem Rev 104(10):4791

    Article  CAS  Google Scholar 

  3. Chen A, Bourne G, Siebein K, Dehoff R, Wachsman E, Jones K (2008) J Am Ceram Soc 91(8):2670

    Article  CAS  Google Scholar 

  4. Baukal W, Kuhn W, Kleinschmager H, Rohr FJ (1976) J Power Sour 1(2):203

    Article  CAS  Google Scholar 

  5. Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ion 22(2–3):241

    Article  CAS  Google Scholar 

  6. Mitterdorfer A, Gauckler LJ (1998) Solid State Ion 111(3–4):185

    Article  CAS  Google Scholar 

  7. Liu YL, Hagen A, Barfod R, Chen M, Wang HJ, Poulsen FW, Hendriksen PV (2009) Solid State Ion 180(23–25):1298

    Article  CAS  Google Scholar 

  8. Chen M, Liu YL, Hagen A, Hendriksen PV, Poulsen FW (2009) Fuel Cell 9(6):833

    Article  CAS  Google Scholar 

  9. Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ion 99(3–4):297

    Article  CAS  Google Scholar 

  10. Paulson SC, Birss VI (2004) J Electrochem Soc 151(11):A1954

    Article  Google Scholar 

  11. Menzler NH, Batfalsky P, Blum L, Bram M, Groß SM, Haanappel VAC, Malzbender J, Shemet V, Steinbrech RW, Vinke I (2007) Fuel Cell 7(5):356

    Article  CAS  Google Scholar 

  12. Chen X, Zhang L, Jiang SP (2008) J Electrochem Soc 155(11):B1085

    Article  Google Scholar 

  13. Jiang SP, Zhen Y (2008) Solid State Ion 179(27–32):1459

    Article  CAS  Google Scholar 

  14. Wang K, Fergus JW (2008) Electrochem Solid-State Lett 11(8):B156

    Article  CAS  Google Scholar 

  15. Bentzen JJ, H√∏gh JVT, Barfod R, Hagen A (2009) Fuel Cell 9(6):823

    Article  CAS  Google Scholar 

  16. Wang K, Fergus JW (2010) J Electrochem Soc 157(7):B1008

    Article  CAS  Google Scholar 

  17. Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14(7):1125

    Article  CAS  Google Scholar 

  18. Chen X, Zhen Y, Li J, Jiang SP (2010) Int J Hydrogen Energy 35(6):2477

    Article  CAS  Google Scholar 

  19. Liu DJ, Almer J, Cruse T (2010) J Electrochem Soc 157(5):B719

    Article  Google Scholar 

  20. Setoguchi T, Inoue T, Takebe H, Eguchi K, Morinaga K, Arai H (1990) Solid State Ion 37(2–3):217

    Article  CAS  Google Scholar 

  21. Stochniol G, Broel S, Naoumidis A, Nickel H (1996) Fresenius’ J Anal Chem 355(5–6):697

    CAS  Google Scholar 

  22. Cortés-Escobedo CA, Munoz-Saldana J, Bolarin-Miro AM, Sanchez-de Jesus F (2008) J Power Sour 180(1):209

    Article  Google Scholar 

  23. Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) J Power Sour 55(1):73

    Article  CAS  Google Scholar 

  24. Schuler JA, Wuillemin Z, Hessler-Wyser A, Van herle J (2009) ECS Trans 25(2):2845

    Article  CAS  Google Scholar 

  25. Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H (2006) Solid State Ion 177(35–36):3193

    Article  CAS  Google Scholar 

  26. Konysheva E, Mertens J, Penkalla H, Singheiser L, Hilpert K (2007) J Electrochem Soc 154(12):B1252

    Article  CAS  Google Scholar 

  27. Jiang SP, Zhang S, Zhen YD (2006) J Electrochem Soc 153(1):A127

    Article  CAS  Google Scholar 

  28. Salvador PA, Wang S, Wilson L, Krumpelt M, Cruse TA (2007) Office of fossible energy fuel cell program

  29. Wuillemin Z, Nakajo A, Müller A, Schuler JA, Diethelm S, Van herle J, Favrat D (2009) ECS Trans 25(2):457

    Article  CAS  Google Scholar 

  30. Wuillemin Z (2009). PhD Thesis n° 4525, Ecole Polytechnique Fédérale de Lausanne, Lausanne

  31. Schuler JA, Tanasini P, Hessler-Wyser A, Van herle J (2010) Scripta Mater 63(8):895

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Commission (FP6 contract SES6-019875.Flame-SOFC) and the Swiss Federal Office for Energy (OFEN, AccelenT project) for financial support, and Fabienne Bobard from CIME for the TEM lamella extraction by FIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hessler-Wyser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hessler-Wyser, A., Wuillemin, Z., Schuler, J.A. et al. TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode. J Mater Sci 46, 4532–4539 (2011). https://doi.org/10.1007/s10853-011-5347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5347-5

Keywords

Navigation