Skip to main content

Advertisement

Log in

Premature degradation study of a cathode-supported solid oxide electrolysis cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Degradation-related issues are among the main limitations to make solid oxide electrolysis cells (SOEC) meet performance targets economically viable for long-term operation. In this study, the considered cell presents a premature degradation during electrolysis operation observed after sealing the cell holder and the support pieces providing and releasing H2 electrode gas. This premature degradation is characterized by unusual polarization curve slopes, and appearance of a new impedance contribution at the lowest frequencies of the impedance diagrams recorded. To the best of our knowledge, this new contribution has never been reported for SOECs. Post-mortem analysis of the cell by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) shows the presence of Si, Al, Na, K, and Ca at the H2 electrode interface (surface and first dozens microns in the volume) and at the Ni-yttria-stabilized zirconia (YSZ)/YSZ interface, contrary to similar cells tested before sealing the pieces. This degradation is related to Si deposition, notably at the Ni/YSZ/H2O triple phase boundaries. Concomitantly, the new contribution observed, leading to a beneficial effect on the cell functioning, is assimilated to a “reactivation” contribution. This reactivation contribution is associated with an H2O adsorption phenomenon and characterized by a relaxation frequency of [1–10 mHz] and a capacitance of ~ 100 F cm−2. The evolution with time of the resistive and capacitive contributions is consistent with the interpretation of the premature cell degradation. A mechanism explaining the cell behavior after this premature degradation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. National Academy of Sciences, National Research Council (February 2004) The hydrogen economy: opportunities, costs, barriers. In: and R&D needs

    Google Scholar 

  2. Manage MN, Hodgson D, Milligan N, Simons SJR, Brett DJL (2011) Int J Hydrog Energy 36(10):5782–5796

    Article  CAS  Google Scholar 

  3. Nechache A, Cassir M, Ringuedé A (2014) J Power Sources 258:164–181

    Article  CAS  Google Scholar 

  4. Fischer GW, Gels HB, Gross F, Liemert K, Rohr FJ (1978) J Power Sources 3(4):331–345

    Article  CAS  Google Scholar 

  5. Elektrochemische Prozesse (1975) DECHEMA-Studie

  6. Isenberg AO, Brecher LE (1970) Water vapor electrolysis at high temperatures, Westinghouse Electric Corp., Final Report, Project Fuel Cell, Rep. No. 57, Proc. First Int. Energy Agency Water Electrolysis Workshop. Brookhaven National Laboratory, Sept. 1975

  7. Rohr FJ High temperature solid oxide fuel cells, Proc. Int. Energy Agency Workshop on Solid Electrolyte Fuel Cells. Brookhaven National Laboratory, May 1977

  8. Isenberg AO (1981) Solid state Ionics 3/4:431–437

  9. Maskalick NJ (1986) Int J Hydrog Energy 11(9):563–570

    Article  CAS  Google Scholar 

  10. Barbi GB, Mari CM (1981) Mater Chem 6(1):35–54

    Article  CAS  Google Scholar 

  11. Barbi GB, Mari CM (1982) Solid State Ionics 6(4):341–351

    Article  CAS  Google Scholar 

  12. Barbi GB, Mari CM Paper presented at the 4th Int. Conf. on Solid State Ionics. Grenoble (4–8 July 1983)

  13. Barbi GB, Mari CM (1988) Solid State Ionics 26(3):243–250

    Article  CAS  Google Scholar 

  14. Barbi GB, Mari CM (1984) Int J Hydrog Energy 9(11):895–899

    Article  CAS  Google Scholar 

  15. Dönitz W, Schmidberger R, Steinheil E (1980) Int J Hydrog Energy 5(1):55–63

    Article  Google Scholar 

  16. Dönitz W, Schmidberger R (1982) Int J Hydrog Energy 7(4):321–330

    Article  Google Scholar 

  17. Dönitz W, Erdle E (1985) Int J Hydrog Energy 10(5):291–295

    Article  Google Scholar 

  18. Dönitz W, Dietrich G, Erdle E, Streicher R (1988) Int J Hydrog Energy 13(5):283–287

    Article  Google Scholar 

  19. Chen K, Hyodo J, Ai N, Ishihara T, Jiang SP (2016) Int J Hydrog Energy 41(3):1419–1431

    Article  CAS  Google Scholar 

  20. Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) J Electrochem Soc 153(9):A1741–A1747

    Article  CAS  Google Scholar 

  21. Jensen SH, Hauch A, Hendriksen PV, Mogensen M, Bonanos N, Jacobsen T (2007) J Electrochem Soc 154(12):B1325–B1330

    Article  CAS  Google Scholar 

  22. Hauch A, Jensen SH, Mogensen M, Bilde-Sørensen JB (2007) J Electrochem Soc 154(7):A619–A626

    Article  CAS  Google Scholar 

  23. Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2008) J Electrochem Soc 155(11):B1184–B1193

    Article  CAS  Google Scholar 

  24. Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2007) J Electrochem Soc 154(4):B371–B378

    Article  CAS  Google Scholar 

  25. Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2005) In: Singhal SC, Mizusaki J (eds) Solid Oxide Fuel Cells (SOFC IX), PV 2005–07, p 524. The Electrochemical Society Proceedings Series, Pennington, NJ

  26. Ebbesen SD, Graves C, Hauch A, Jensen SH, Mogensen M (2010) J Electrochem Soc 157(10):B1419–B1429

    Article  CAS  Google Scholar 

  27. Laguna-Bercero MA (2012) J Power Sources 203:4–16

    Article  CAS  Google Scholar 

  28. Moçoteguy P, Brisse A (2013) Int J Hydrog Energy 38(36):15887–15902

    Article  Google Scholar 

  29. Keane M, Fan H, Han M, Singh P (2014) Int J Hydrog Energy 39(33):18718–18726

    Article  CAS  Google Scholar 

  30. Chen K, Ai N, Jiang SP (2014) Int J Hydrog Energy 39(20):10349–10358

    Article  CAS  Google Scholar 

  31. Hjalmarsson P, Sun X, Liu YL, Chen M (2014) J Power Sources 262:316–322

    Article  CAS  Google Scholar 

  32. Chen T, Liu M, Yuan C, Zhou Y, Ye X, Zhan Z, Xia C, Wang S (2015) J Power Sources 276:1–6

    Article  CAS  Google Scholar 

  33. Knibbe R, Traulsen ML, Hauch A, Ebbesen SD, Mogensen M (2010) J Electrochem Soc 157(8):B1209–B1217

    Article  CAS  Google Scholar 

  34. Pan Z, Liu Q, Lyu R, Li P, Chan SH (2018) J Power Sources 378:571–578

    Article  CAS  Google Scholar 

  35. Duboviks V, Maher RC, Kishimoto M, Cohen LF, Brandon NP, Offer GJ (2014) Phys Chem Chem Phys 16(26):13063–13068

    Article  CAS  Google Scholar 

  36. Tao Y, Ebbesen SD, Mogensen MB (2014) J Electrochem Soc 161(3):F337–F343

    Article  CAS  Google Scholar 

  37. Tao Y, Ebbesen SD, Zhang W, Mogensen MB (2014) ChemCatChem 6:1220–1224

    CAS  Google Scholar 

  38. Skafte TL, Blennow P, Hjelm J, Graves C (2018) J Power Sources 373:54–60

    Article  CAS  Google Scholar 

  39. Duboviks V, Lomberg M, Maher RC, Cohen LF, Brandon NP, Offer GJ (2015) J Power Sources 293:912–921

    Article  CAS  Google Scholar 

  40. Zheng Y, Li Q, Chen T, Wu W, Xu C, Wang WG (2015) Int J Hydrog Energy 40(6):2460–2472

    Article  CAS  Google Scholar 

  41. Kim SJ, Kim KJ, Choi GM (2015) J Power Sources 284:617–622

    Article  CAS  Google Scholar 

  42. Hjalmarsson P, Sun X, Liu YL, Chen M (2013) J Power Sources 223:349–357

    Article  CAS  Google Scholar 

  43. Nechache A, Mansuy A, Petitjean M, Mougin J, Mauvy F, Boukamp BA, Cassir M, Ringuedé A (2016) Electrochim Acta 210:596–605

    Article  CAS  Google Scholar 

  44. Brisse A, Schefold J, Zahid M (2008) Int J Hydrog Energy 33(20):5375–5382

    Article  CAS  Google Scholar 

  45. Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155(1):B36–B41

    Article  CAS  Google Scholar 

  46. Dasari HP, Park SY, Kim J, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ (2013) J Power Sources 240:721–728

    Article  CAS  Google Scholar 

  47. Fan H, Keane M, Singh P, Han M (2014) J Power Sources 268:634–639

    Article  CAS  Google Scholar 

  48. Schefold J, Brisse A, Zahid M (2009) J Electrochem Soc 156(8):B897–B904

    Article  CAS  Google Scholar 

  49. Wang W, Huang Y, Jung S, Vohs JM, Gorte RJ (2006) J Electrochem Soc 153(11):A2066–A2070

    Article  CAS  Google Scholar 

  50. Hanifi AR, Laguna-Bercero MA, Etsell TH, Sarkar P (2014) Int J Hydrog Energy 39(15):8002–8008

    Article  CAS  Google Scholar 

  51. Laguna-Bercero MA, Campana R, Larrea A, Kilner JA, Orera VM (2011) J Power Sources 196(21):8942–8947

    Article  CAS  Google Scholar 

  52. Jiang SP, Badwal SPS (1999) Solid State Ionics 123(1-4):209–224

    Article  CAS  Google Scholar 

  53. Laguna-Bercero MA, Kilner JA, Skinner SJ (2010) Chem Mater 22(3):1134–1141

    Article  CAS  Google Scholar 

  54. Chen S, Xie K, Dong D, Li H, Qin Q, Zhang Y, Wu Y (2015) J Power Sources 274:718–729

    Article  CAS  Google Scholar 

  55. Anderson JC, Leaver KD, Rawlings RD, Alexander JM (1990) Materials science. Chapmann & Hall, New York

    Book  Google Scholar 

  56. Doremus RH (1973) Glass science. John Wiley & Sons, New York

    Google Scholar 

  57. Holland L (1964) The properties of glass surface. Chapman and Hall, London

    Google Scholar 

  58. Butler EP, Drennan J (1982) J Am Ceram Soc 65(10):474–478

    Article  CAS  Google Scholar 

  59. Jewell JM, Spess MS, Shelby JE (1990) J Am Ceram Soc 73(1):132–135

    Article  CAS  Google Scholar 

  60. Jewell JM, Shelby JE (1990) J Cryst Growth 73:1446

    CAS  Google Scholar 

  61. Shelby JE, Mcvay GL (1976) J Non-Cryst Solids 20(3):439–449

    Article  CAS  Google Scholar 

  62. Mansuy A (2012) PhD Thesis, Université Bordeaux 1

  63. Nechache A (2014) PhD thesis, Université Pierre et Marie Curie, Paris

  64. Virkar AV (2007) J Power Sources 172(2):713–724

    Article  CAS  Google Scholar 

  65. van Hassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:139–154

    Article  Google Scholar 

  66. van Hassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:155–171

    Article  Google Scholar 

Download references

Funding

This work is supported by the French Research National Agency (ANR) through Hydrogène et piles à combustible program (project FIDELHYO n°ANR-09-HPAC-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aziz Nechache or Armelle Ringuedé.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechache, A., Boukamp, B.A., Cassir, M. et al. Premature degradation study of a cathode-supported solid oxide electrolysis cell. J Solid State Electrochem 23, 109–123 (2019). https://doi.org/10.1007/s10008-018-4116-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4116-7

Keywords

Navigation