Skip to main content
Log in

Processing and electromechanical properties of lanthanum-doped Pb(Zr,Ti)O3 extruded piezoelectric fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article describes the processing and characterisation of lanthanum-doped lead zirconate titanate (PLZT)-based ferroelectric fibres for composite transducer applications. X-ray diffraction of the extruded and sintered fibres indicated some lead loss during sintering; however, the fibres exhibited low porosity (1.54%), high maximum piezoelectric strain (4041 ppm) and relatively low coercive field (0.77 kV/mm). The low coercive field of the lanthanum-doped fibres may be advantageous in terms of facilitating polarization of the fibres in composite architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tressler JF, Alkoy S, Doganand A, Newnham RE (1999) Composites A 30:477

    Article  Google Scholar 

  2. Janas V, Safari A (1995) J Am Ceram Soc 78:2945

    Article  CAS  Google Scholar 

  3. Harvey G, Gachagan A, Mackersie JW, Mccunnie T, Banks R (2009) IEEE Trans Ultrason Ferroelectr Freq Control 56:1999

    Article  Google Scholar 

  4. Bowen CR, Bradley LR, Almond DP, Wilcox PD (2008) Ultrasonics 48:367

    Article  CAS  Google Scholar 

  5. Yoshikawa S, Selvaraj U, Brooks KG, Kurtz SK (1992) In: Lui M (ed) Proceedings of the 8th IEEE International Symposium on applications of ferroelectrics, IEEE, New York, p 269

  6. Schultz MR, Hyer MW, Williams RB, Wilkie WK, Inman DJ (2006) Compos Sci Technol 66:2442

    Article  Google Scholar 

  7. Bent AA, Hagood NW (1997) J Intell Mater Syst Struct 8:903

    Article  Google Scholar 

  8. Nelson LJ (2002) Mater Sci Tech 18:1245

    Article  CAS  Google Scholar 

  9. Heiber J, Clemens F, Graule T, Hulsenberg D (2005) Adv Eng Mater 7:404

    Article  CAS  Google Scholar 

  10. Bowen CR, Stevens R, Nelson LJ, Dent AC, Dolman G, Su B, Button TW, Cain MG, Stewart M (2006) Smart Mater Struct 15:295

    Article  Google Scholar 

  11. Cass RB (1991) Am Ceram Soc Bull 70:424

    CAS  Google Scholar 

  12. Meister F, Vorbach D, Niemz F, Schulze T (2003) Materialwiss Werkstofftech 34(3):262

    Article  CAS  Google Scholar 

  13. Li K, Li J, Cao D, Li J-H (2008) J Compos Mater 42:1125

    Article  CAS  Google Scholar 

  14. Ting SM, Janas VF, Safari A (1996) J Am Ceram Soc 79:1689

    Article  CAS  Google Scholar 

  15. Beckert W, Kreher W, Braue W, Antre M (2001) J Eur Ceram Soc 21:1445

    Article  Google Scholar 

  16. Haertling GH, Land CE (1971) J Am Ceram Soc 54(1):1

    Article  CAS  Google Scholar 

  17. Härdtl KH (1976) Ferroelectrics 12(1–4):9

    Article  Google Scholar 

  18. Haertling GH (1999) J Am Ceram Soc 82:797

    Article  CAS  Google Scholar 

  19. Meyer RJ, Shrout TR, Yoshikawa S (1997) In: ISAF ‘96—Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics, vol 1 and 2. East Brunswick, p 547

  20. Kitaoka K, Kozuka H, Yoko T (1998) J Am Ceram Soc 81(5):1189

    Article  CAS  Google Scholar 

  21. Chong SL, Venkatesh R, Ramanan SR (2005) Integr Ferroelectr 70:19

    Article  CAS  Google Scholar 

  22. Yu G, Wang X, Zhu L, Xu D, Ren Q, Zhang G, Liu X, Sun Z, Fan H (2008) Solid State Sci 10:859

    Article  CAS  Google Scholar 

  23. Heiber J, Clemens F, Helbig U, De Meuron A, Soltmann CH, Graule T, Hulsenberg D (2007) Acta Mater 55:6499

    Article  CAS  Google Scholar 

  24. Chinn RE (2002) In: Preparation and analysis of ceramic microstructures. ASM International, Materials Park

  25. Belloli A, Heiber J, Clemems F, Ermanni P (2009) J Intell Mater Syst Struct 20:355

    Article  Google Scholar 

  26. Nelson LJ, Bowen CR, Stevens R, Cain M, Stewart M (2003) In: Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), vol 5053. Bellingham, p 544

  27. Dent AC, Nelson LJ, Bowen CR, Stevens R, Cain M, Stewart M (2005) J Eur Ceram Soc 25:2387

    Article  CAS  Google Scholar 

  28. Jiang QY, Subbarao EC, Cross LE (1994) J Appl Phys 75:7433

    Article  CAS  Google Scholar 

  29. Li K, Li JH, Li JC, Chan HLW (2004) J Inorg Mater 19:361

    CAS  Google Scholar 

  30. Zhu ZL, Tang DY, Zhang XH, Qiao YJ (2010) Adv Mater Res 105–106:355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.C.E. Dent would like to acknowledge support from Great Western Research (GWR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Clemens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, F., Comyn, T., Heiber, J. et al. Processing and electromechanical properties of lanthanum-doped Pb(Zr,Ti)O3 extruded piezoelectric fibres. J Mater Sci 46, 4517–4523 (2011). https://doi.org/10.1007/s10853-011-5345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5345-7

Keywords

Navigation