Skip to main content
Log in

The effect of tantalum substitution on the microstructure and dielectric and piezoelectric properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Lead zirconate titanate (PZT95/5) based piezoelectric ceramics with the compositions Pb0.99(Zr0.95Ti0.05)0.98Ta0.02O3 (PZTT) and Pb0.99−0.5x(Zr0.95Ti0.05)0.98−xNb0.02TaxO3 (PZTN), where x = 0.0, 0.005, 0.010, 0.015 and 0.020 were synthesized using conventional solid state sintering at 1250 °C for 2 h in air. The effect of tantalum substitution on the microstructure, dielectric and piezoelectric properties of the samples were studied. The results showed that the Ta-doped samples had finer microstructures. The PZTT samples had microstructures with finer grains (average grain size of 3.80 µm) in comparison with the PZTN samples (average grain size of 5.33 µm). The relative densities of the PZTN and PZTT samples were approximately 94.1 and 94.4%, respectively. Moreover, the relative dielectric constant (εr), piezoelectric coefficient (d31) and elastic compliance (S11E) of the samples reached the maximum values of 349, − 15.2 PC/N and 8.42 Pm2/N, respectively at 1.5 mol% tantalum substitution. Furthermore, the relative dielectric constant (εr), piezoelectric coefficient (d33) and voltage coefficient (g33) of the PZTN samples reached the optimal values of 306, 69 PC/N and 25.44 mV m/N, respectively, in comparison with the PZTT samples (329, 67 PC/N and 21.43 mV m/N, respectively). The results indicate that the tantalum doped PZT95/5 ceramics can be used for pulsed power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Handerek, Z. Ujma, C.C. Nédelec, G.E. Kugel, D. Dmytrow, I.E. Harrad, Dielectric, pyroelectric, and thermally stimulated depolarization current investigations on lead lanthanum zirconate titanate x/95/5 ceramics with La content x = 0.5–4%. Appl. Phys. 73, 367–373 (1993)

    Article  CAS  Google Scholar 

  2. R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: depoling currents. Appl. Phys. 97, 013507–013516 (2005)

    Article  Google Scholar 

  3. I.J. Fritz, J.D. Keck, Pressure-temperature phase diagrams for several modified lead zirconate ceramics. Phys. Chem. Solids 39, 1163–1167 (1987)

    Article  Google Scholar 

  4. R. Clarke, A.M. Glazer, F.W. Ainger, D. Appleby, N.J. Poole, S.G. Porter, Phase transitions in lead zirconate-titanate and their applications in thermal detectors. Ferroelectrics 11, 359–364 (1976)

    Article  CAS  Google Scholar 

  5. R.S. Roth, Classification of perovskite and other AB03-type compounds. Res. Natl. Bur. Stan. 58, 75–88 (1957)

    Article  CAS  Google Scholar 

  6. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  7. M. Avdeev, J.D. Jorgensen, S. Short, G.A. Samara, E.L. Venturini, P. Yang. B. Morosin, Pressure-induced ferroelectric to antiferroelectric phase transition in Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3. Phys. Rev. B 73, 064105 (2006)

    Article  Google Scholar 

  8. W.D. Dong, J.C. Valadez, J.A. Gallagher, H.R. Jo, R. Sahul, W. Hackenberger, C.S. Lynch, Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate. J. Appl. Phys. 117(24), 244104(2015)

    Article  Google Scholar 

  9. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–836 (1999)

    Article  CAS  Google Scholar 

  10. B.A. Tuttle, P. Yang, J.H. Gieske, J.A. Voigt, T.W. Scofield, D.H. Zeuch. W.R. Olson, Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics. J. Am. Ceram. Soc. 84, 1260–1265 (2001)

    Article  CAS  Google Scholar 

  11. F. Kulcsar, Electromechanical properties of lead titanate zirconate ceramics modified with certain threeor five-vaient additions. J. Am. Ceram. Soc. 42, 343–370 (1959)

    Article  CAS  Google Scholar 

  12. R.H. Dungan, L.J. Storz, Relation between chemical, mechanical, and electrical properties of Nb205-modified 95 Mol%PbZr03-5Mol%PbTi03. J. Am. Ceram. Soc. 68, 530–533 (1985)

    Article  CAS  Google Scholar 

  13. F.W. Neilson, Effects of strong shocks in ferroelectric materials. Bull. Am. Phys. Soc. 2, 34–42 (1957)

    Google Scholar 

  14. D. Berlincourt, H. Jaffe, H.A. Crueger, B. Jaffe, Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Appl. Phys. Lett. 129, 96–103 (1963)

    Google Scholar 

  15. J. Wang, G. Wang, X. Chen, Z. Hu, H. Nie, F. Cao, X. Dong, An investigation on phase transition behaviors in MgO-doped Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics by Raman and dielectric measurements. Mater. Sci. Eng. B 193, 170–174 (2015)

    Article  CAS  Google Scholar 

  16. M.M.S. Pojucan, M.C.C. Santos, F.R. Pereira, M.A.S. Pinheiro, M.C. Andrade, Piezoelectric properties of pure and (Nb5+ + Fe3+) doped PZT ceramics. Ceram. Int. 36, 1851–1855 (2010)

    Article  CAS  Google Scholar 

  17. I.T. Seo, T.G. Lee, D.H. Kim, J. Hur, J.H. Kim, S. Nahm, J. Ryu, B.Y. Choi, Multilayer piezoelectric haptic actuator with CuO-modified PZT-PZNN ceramics. Sens. Actuators A 238, 71–79 (2016)

    Article  CAS  Google Scholar 

  18. J. Wang, G. Wang, J. Wang, X. Chen, H. Nie, F. Cao. X. Dong, Enhanced breakdown strength of Al2O3-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with core–shell structure. Ceram. Int. 42, 10105–10109 (2016)

    Article  CAS  Google Scholar 

  19. H. Goudarzi, S. Baghshahi, The effect of lanthanum substitution on the sintering behavior and the dielectric and piezoelectric properties of niobium doped Pb(Zr0.95Ti0.05)O3 ceramics. J. Mater. Sci. 28, 4863–4870 (2017)

    CAS  Google Scholar 

  20. H. Goudarzi, S. Baghshahi, PZT ceramics prepared through a combined method of B-site precursor and wet mechanically activated calcinate in a planetary ball mill. Ceram. Int. 43, 3873–3878 (2017)

    Article  CAS  Google Scholar 

  21. H. Goudarzi, S. Baghshahi, The effect of lanthanum substitution on εr and kp aging rates of niobium doped Pb(Zr0.95Ti0.05)O3 ceramics. J. Aust. Ceram. Soc. 53, 761–766 (2017)

    Article  Google Scholar 

  22. B. Cherdhirunkorn, M.F. Smith, S. Limpijumnong, D.A. Hall, EXAFS study on the site preference of Mn in perovskite structure of PZT ceramics. Ceram. Int. 34, 727–729 (2008)

    Article  CAS  Google Scholar 

  23. A. Tawfik, Elastic properties and sound wave velocity of PZT transducers doped with Ta and La. J. Am. Ceram. Soc. 68, C317–C319 (1985)

    Article  CAS  Google Scholar 

  24. Z. Zhang, L. Lua, C. Shu, P. Wu, Computational investigation of B-site donor doping effect on fatigue behavior of lead zirconate titanate. Appl. Phys. Lett. 89, 3 (2006)

    Google Scholar 

  25. R.D. Shannon, Crystal radii. Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  26. R.B. Atkin, R.M. Fulrath, Point defects and sintering of lead zirconate-titanate. J. Am. Ceram. Soc. 54, 265–271 (1971)

    Article  CAS  Google Scholar 

  27. J. Wang, G. Wang, H. Nie, X. Chen, F. Cao, X. Dong, Y. Gu, H. He, Low temperature sintering and electric properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with CuO additive. J. Am. Ceram. Soc. 96, 2370–2373 (2013)

    Article  CAS  Google Scholar 

  28. I. El-Harrad, Ph.D. Thesis, Contribution, A L’Etude Structural Et Spectroscopique De Ceramiques Perovskites PLZT: (Pb1−3x/2Lax/2) (Zr0.95Ti0.05)O3(x = 0.01–0.08) PZTN: Pb0.99[(Zr0.95Ti0.05)0.97 Nb0.025] O3 Et De Leurs Transitions De Phases. The Metz University, Metz, (1994)

  29. K.W. Gachigi, Ph.D. Thesis, Electrical energy storage in antiferroelectric-ferroelectric phase switching chemically modified lead zirconate ceramics. The Pennsylvania State University, University Park, (1997)

  30. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  31. D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. Appl. Phys. 109, 054110 (2011)

    Article  Google Scholar 

  32. Z.Q. Zhuang, M.J. Haun, S.J. Jang, L.E. Cross, Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 413–416 (1989)

    Article  CAS  Google Scholar 

  33. J. Fialka, P. Benes, L. Michlovska, S. Klusacek, S. Pikula, P. Dohnal, Measurement of thermal depolarization effects in piezoelectric coefficients of soft PZT ceramics via the frequency and direct methods. J. Eur. Ceram. Soc. 36, 2727–2738 (2016)

    Article  CAS  Google Scholar 

  34. R.J. Cava, W.F. Peck, J.J. Krajewski, G.L. Roberts, Dielectric properties of the (Nbl_xTax)2O5 solid solution. Mater. Res. Bull. 31, 295–299 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoud Mohebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A., Mohebi, M.M., Baghshahi, S. et al. The effect of tantalum substitution on the microstructure and dielectric and piezoelectric properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics. J Mater Sci: Mater Electron 29, 17948–17955 (2018). https://doi.org/10.1007/s10854-018-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9910-6

Navigation