Skip to main content
Log in

Use of recalescence behavior analysis for the prediction of grain refinement in undercooled Cu–Ni alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Considering non-equilibrium solidification and its influence on subsequent near-equilibrium solidification together, the description of recalescence behavior in bulk undercooled Cu70Ni30 alloy was adopted to predict the corresponding microstructure transition. The thermal plateau time for near-equilibrium solidification can be deduced directly with the calculation of non-equilibrium solid fraction formed in recalescence. On the basis of quantitative description for recalescence behavior, the non-equilibrium solid fraction, residual liquid fraction, dendrite broken-up time, and thermal plateau time can be determined as functions of initial undercooling. Then, a simple and accurate application of dendrite fragmentation model was performed as the grain refinement at both low- and high-undercooling originates from dendrite breakup. The predicted undercooling regions for the double grain refinement agree well with the experimental observation. Moreover, the change of grain morphology for the second grain refinement can be ascribed to the occurrence of recrystallization produced by the enhanced residual stress upon highly undercooled solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christian JW (2002) The theory of transformation in metals and alloys, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  2. Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech Publications Ltd, Switzerland

    Google Scholar 

  3. Baker JC, Cahn JW (1971) Solidification, 1st edn. ASM, Metals Park, OH

    Google Scholar 

  4. Walker JL (1959) The physical chemistry of process metallurgy. Wiley Interscience, New York, NY

    Google Scholar 

  5. Liu N, Liu F, Yang GC, Chen YZ, Chen D, Yang CL, Zhou YH (2007) Physica B 387:151

    Article  CAS  Google Scholar 

  6. Chen YZ, Yang GC, Liu F, Liu N, Xie H, Zhou YH (2005) J Cryst Growth 282:490

    Article  CAS  Google Scholar 

  7. Eckler K, Norman AF, Gätner F (1997) J Cryst Growth 173:528

    Article  CAS  Google Scholar 

  8. Han XJ, Yang C, Wei B, Chen M, Guo ZY (2001) Mater Sci Eng A 307:35

    Article  Google Scholar 

  9. Girtneri F, Norman AF, Greer AL, Zambon A, Ramous E, Eckler K, Herlach DM (1997) Acta Mater 45:51

    Article  Google Scholar 

  10. Norman AF, Eckler K, Zambon A, Gärtner F, Moir SA, Ramous E, Herlach DM, Greer AL (1998) Acta Mater 46:3355

    Article  CAS  Google Scholar 

  11. Maslov VV, Nosenko VK, Jurisch M (2002) J Mater Sci 37:4663. doi:10.1023/A:1020668904024

    Article  CAS  Google Scholar 

  12. Willnecker R, Herlach DM, Feuerbacher B (1990) Appl Phys Lett 56:324

    Article  CAS  Google Scholar 

  13. Dragnevski K, Cochrane RF, Mullis AM (2002) Phys Rev Lett 89:215502

    Article  CAS  Google Scholar 

  14. Mullis AM, Cochrane RF (1997) J Appl Phys 82:3783

    Article  CAS  Google Scholar 

  15. Mullis AM, Cochrane RF (1998) J Appl Phys 84:4905

    Article  CAS  Google Scholar 

  16. Powell GLF (1968) Trans Met Soc AIME 242:2133

    CAS  Google Scholar 

  17. Li JF, Zhou YH, Yang GC (2000) Mater Sci Eng A 277:161

    Article  Google Scholar 

  18. Karma A (1998) Int J Non-Equilib Process 11:201

    CAS  Google Scholar 

  19. Schwarz M, Karma A, Eckler K (1994) Phys Rev Lett 73:1380

    Article  CAS  Google Scholar 

  20. Liu F, Yang GC (2006) Int Mater Rev 51:145

    Article  CAS  Google Scholar 

  21. Yang W, Liu F, Wang HF, Chen Z, Yang GC, Zhou YH (2009) J Alloys Compd 470:L13

    Article  CAS  Google Scholar 

  22. Yang W, Liu F, Liu H, Yang GC, Zhou YH (2009) J Cryst Growth 311:3225

    Article  CAS  Google Scholar 

  23. Yang W, Liu F, Wang HF, Chen Z, Yang GC, Zhou YH (2010) J Alloys Compd 491:118

    Article  CAS  Google Scholar 

  24. Piccone TJ, Wu Y, Shiohara Y, Flemings MC (1987) Metall Trans A 18:925

    Article  Google Scholar 

  25. Galenko PK, Danilov DA (1999) J Cryst Growth 197:992

    Article  CAS  Google Scholar 

  26. Wang TM, Xu JJ, Xiao TQ, Xie HL, Li J, Li TJ, Cao ZQ (2010) Phys Rev E 81:042601

    Article  Google Scholar 

  27. Rosam J, Jimack PK, Mullis AM (2008) Acta Mater 56:4559

    Article  CAS  Google Scholar 

  28. Ramirez JC, Beckermann C (2005) Acta Mater 53:1721

    Article  CAS  Google Scholar 

  29. Sha W, Wu X, Keong KG (2010) Electroless copper and nickel-phosphorus plating: processing, characterisation and modelling, 1st edn. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  30. Herlach DM, Eckler K, Karma A, Schwarz M (2001) Mater Sci Eng A 304–306:20

    Google Scholar 

Download references

Acknowledgements

W. Yang is grateful to the financial support by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201118) and Scientific Starting Foundation for Doctorate Research in Nanchang Hangkong University (EA201003234). The authors are also grateful to the Free Research Fund of State Key Lab. of Solidification Processing (09-QZ-2008; 24-TZ-2009), the 111 project (B08040), the Natural Science Foundation of China (Grant nos. 50771084; 51071127, 50901059), National Basic Research Program of China (973 Program) 2011CB610403, the HuoYingdong Yong Teacher Fund (111052), the Fundamental Research Fund of Northwestern Polytechnical University (2008JC01), Aeronautical Science Foundation of China (2008ZF56016), the Open Fund of Aeronautical Science and Technology Key Lab. of Aeronautical Materials Processing in Nanchang Hangkong University and the Project of Education Department of Jiangxi (GJJ08199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Liu, F., Xu, Z.F. et al. Use of recalescence behavior analysis for the prediction of grain refinement in undercooled Cu–Ni alloy. J Mater Sci 46, 3101–3107 (2011). https://doi.org/10.1007/s10853-010-5189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5189-6

Keywords

Navigation