Skip to main content

Advertisement

Log in

Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, strength evaluation of silicon carbide (Si–C) ceramics fabricated from polycarbosilane (PCS) precursor is described. Si–C ceramics was prepared by firing a green body made of the mixture of Si–C nano-powders and a PCS solution at 1,273 K in N2 gas for an hour. To obtain dense Si–C, the solution was infiltrated into the produced body, and then it was fired again. The polymer infiltration and pyrolysis (PIP) process was conducted up to 12 cycles. Si–C ceramics was diced to be rectangle shape measuring 1.0 mm × 3.0 mm × 0.5 mm, and was subjected to the three-point bending test for measurement of the Young’s modulus and bending strength. Si–C specimens fabricated through PIP processes less than 2 cycles showed non-linear force–displacement curves like a polymer, whereas those through the processes more than 3 cycles showed linear relations and fractured in a brittle manner. The Young’s modulus of 12-cycles-PIPs specimen was found to be 56 GPa on average, which was approximately 22-fold of non-PIP specimen. The bending strength was also increased with an increase in the number of PIP process. The maximum value was found to be 157 MPa. The cause of the influence of PIP process on the mechanical characteristics is discussed using a PCS-derived Si–C model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanaka H (2004) J Inst Electr Eng Japan E 122(1):262

    Google Scholar 

  2. Peilo F, Pisano A, Fu K, Walther DC, Knobloch A, Martinez F, Senesky M, Maboudian R (2003) IEEJ Trans SM 123(9):326

    Article  Google Scholar 

  3. Hara M, Tanaka S, Esashi M (2002) In: Proceedings of the 19th sensor symposium, p 507

  4. Kang P, Tanaka S, Esashi M (2005) J Micromech Microeng 15:1076

    Article  Google Scholar 

  5. Takahashi K (2004) Aeronaut Space Sci Japan 52(609):262

    Google Scholar 

  6. Teramoto S, Nagashima T (2004) Aeronaut Space Sci Japan 52(609):267

    Google Scholar 

  7. Song SJ (2004) Aeronaut Space Sci Japan 52(610):297

    Google Scholar 

  8. Liew L, Zhang W, Bright M, Linan A, Martin L, Rishi R (2001) Sens Actuators A 89:64

    Article  Google Scholar 

  9. Goto T (2007) J Jpn Soc Powder Powder Metall 54(12):863

    Article  CAS  Google Scholar 

  10. Shah SR, Raj R (2002) Acta Mater 50:4093

    Article  CAS  Google Scholar 

  11. Taguchi T, Igawa N, Yamada R, Futakawa M, Jitsukawa S (2001) Ceram Eng Sci Proc 22(3):533

    Article  CAS  Google Scholar 

  12. Oh JH, Choi DJ (2000) J Mater Sci Lett 19(22):2043

    Article  CAS  Google Scholar 

  13. Beyer S (1999) Development and testing of C/SiC components for liquid rocket propulsion applications. Pap Am Inst Aeronaut Astronaut, p 12

  14. Niu J, Kijima K, Nakahira A, Tanaka K (1999) Proc Ceram Soc Japan 1999:289

    Google Scholar 

  15. Chen L, Goto T, Hirai T (1996) J Mater Sci 31(3):679. doi:10.1007/BF00367885

    Article  CAS  Google Scholar 

  16. Liew L-A, Zhang W, An L, Shah S, Luo R, Liu Y, Cross T, Dunn ML, Bright V, Daily JW, Raj R, Anseth K (2001) Am Ceram Soc Bull 50(5):25

    Google Scholar 

  17. Nagaiah NR, Kapat JS, An L, Chow L (2006) J Phys 34:458

    Google Scholar 

  18. Kong JS, Frangopol DM, Raulli M, Maute K, Saravanan RA, Liew L-A, Raj R (2004) Sens Actuators A 116:336

    Article  Google Scholar 

  19. Lee D-H, Park K-H, Hong L-Y, Kim D-P (2007) Sens Actuators A 135:895

    Article  Google Scholar 

  20. Liew L-A, Saravanan RA, Bright VM, Dunn ML, Daily JW, Raj R (2003) Sens Actuators A 103:171

    Article  Google Scholar 

  21. Liu Y, Liew L-A, Luo R, An L, Dunn ML, Bright VM, Daily JW, Raj R (2002) Sens Actuators A 95:143

    Article  Google Scholar 

  22. Hasegawa Y, Okamura K (1983) J Mater Sci 18:3633. doi:10.1007/BF00540736

    Article  CAS  Google Scholar 

  23. Hasegawa Y, Okamura K (1986) J Mater Sci 21:321. doi:10.1007/BF01144739

    Article  CAS  Google Scholar 

  24. Ishikawa T, Namazu T, Yoshiki K, Inoue S, Hasegawa Y (2010) In: Proceedings of the Microelectromechanical Systems, MEMS 2010, p 416

  25. Hasegawa Y (2006) In: Proceedings of the 55th polymer conf: 3003–3004

  26. Suyama S, Itoh Y (2006) Rev TOSHIBA 61(6):72

    Google Scholar 

  27. Zhang H, Yan Y, Huang Z, Liu X, Jiang D (2009) J Am Ceram Soc 92(7):1559

    Article  Google Scholar 

  28. Day RJ, Piddock V, Taylor R, Young RJ, Zakikhani M (1989) J Mater Sci 24:2898. doi:10.1007/BF02385644

    Article  CAS  Google Scholar 

  29. Tuinstra F, Koenig JL (1970) J Compos Mater 4:492

    CAS  Google Scholar 

  30. Sasaki Y, Nishina Y, Sato M, Okamura K (1986) Yogyo-Kyokai-Shi 94(8):897

    CAS  Google Scholar 

  31. Namazu T, Isono Y, Tanaka T (2000) J Microelectromech Syst 9(4):450

    Article  Google Scholar 

  32. Hurtado AM, Alkan Z (1993) Ceram Int 19(5):327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Namazu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namazu, T., Ishikawa, T. & Hasegawa, Y. Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics. J Mater Sci 46, 3046–3051 (2011). https://doi.org/10.1007/s10853-010-5182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5182-0

Keywords

Navigation