Skip to main content
Log in

Structure and properties of novel electrospun tussah silk fibroin/poly(lactic acid) composite nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tussah silk fibroin (TSF)/poly(lactic acid) (PLA) composite nanofibers with different composition ratios were prepared by electrospinning with 1,1,1,3,3,3-Hexafluoro-2-propanol as the solvent. The morphology and secondary structure of the fibers were characterized by Scanning electronic microscope, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The thermal and mechanical tests were also performed. The spinnability of TSF solution was improved significantly through adding 10% PLA, and the average diameter of the fibers decreased from 583 nm to 178 nm with an obvious improvement in fiber diameter uniformity. In addition, the mechanical properties of electrospun nanofibers increased evidently after blending 10% PLA, whereas the thermal properties kept stable. FTIR and XRD analysis indicated the addition of 5% PLA could induce a conformation transformation of TSF from random coil and α-helix to β-sheet, however, when PLA content was more than 10%, the β-sheet structure of TSF in composite nanofibers decreased, and the phase separation of two compositions occurred. Therefore, when PLA content exceeded 15%, the average diameters of TSF/PLA composite nanofibers increased and appeared to be polarized, moreover, the mechanical properties of the fibers decreased with the increase of PLA content, and the fibers displayed the mechanical behavior of PLA component more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patra SN, Easteal AJ, Bhattacharyya D (2009) J Mater Sci 44:647. doi:10.1007/s10853-008-3050-y

    Article  CAS  Google Scholar 

  2. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) J Biomed Mater Res 60:613

    Article  CAS  Google Scholar 

  3. Tretinnikov ON, Tamada Y (2001) Langmuir 17:7406

    Article  CAS  Google Scholar 

  4. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Biomaterials 25:1289

    Article  CAS  Google Scholar 

  5. Zhang F, Zuo BQ, Bai L (2009) J Mater Sci 44:5682. doi:10.1007/s10853-009-3800-5

    Article  CAS  Google Scholar 

  6. Ohgo K, Zhao C, Kobayashi M, Asakura T (2003) Polymer 44:841

    Article  CAS  Google Scholar 

  7. Chen C, Cao CB, Ma X, Tang Y, Zhu H (2006) Polymer 47:6322

    Article  CAS  Google Scholar 

  8. Park WH, Jeong L, Yoo DI, Hudson S (2004) Polymer 45:7151

    Article  CAS  Google Scholar 

  9. Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Int J Biol Macromol 38:165

    Article  CAS  Google Scholar 

  10. Yin G, Zhang Y, Bao W, Wu J, Shi D, Dong Z, Fu W (2009) J Appl Polym Sci 111:1471

    Article  CAS  Google Scholar 

  11. Nakazawa Y, Asakura T (2002) Macromolecules 35:2393

    Article  CAS  Google Scholar 

  12. Pierschbacher MD, Ruoslahti E (1984) Nature 30:309

    Google Scholar 

  13. He J, Wang Y, Cui S, Gao Y, Wang S (2010) Iran Polym J 19:625

    CAS  Google Scholar 

  14. Kweon HY, Park YH (2001) J Appl Polym Sci 82:75

    Article  Google Scholar 

  15. Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Nano Lett 3:213

    Article  CAS  Google Scholar 

  16. Zarkoob S, Reneker DH (1998) Polymer 39:244

    CAS  Google Scholar 

  17. Inoue S, Magoshi J, Tanaka T, Magoshi Y, Becker M (2000) J Polym Sci Part B Polym Phys 38:1436

    Article  CAS  Google Scholar 

  18. Freddi G, Monti P, Nagura M, Gotoh Y, Tsukada M (1997) J Polym Sci Part B 35:841

    Article  CAS  Google Scholar 

  19. Kweon HY, Woo SO, Park YH (2000) J Appl Polym Sci 81:2271

    Article  Google Scholar 

  20. Kweon HY, Park YH (1999) J Appl Polym Sci 73:2887

    Article  CAS  Google Scholar 

  21. Li MZ, Tao W, Kuga S, Nishiyama Y (2003) Polym Adv Technol 14:694

    Article  CAS  Google Scholar 

  22. Kweon HY, Um IC, Park YH (2000) Polymer 41:7361

    Article  CAS  Google Scholar 

  23. Freddi G, Gotoh Y, Tsutsui T, Tsukada M (1994) J Appl Polym Sci 53:775

    Article  Google Scholar 

  24. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208

    Article  CAS  Google Scholar 

  25. Stamboulis A, Baillie C, Schulz E (1999) Macromol Mater Eng 272:117

    CAS  Google Scholar 

  26. Kopczynska A, Ehrenstein GW (2007) J Mater Ed 29:325

    CAS  Google Scholar 

  27. Brostow W, Hagg Lobland HE, Narkis M (2006) J Mater Res 21:2422

    Article  CAS  Google Scholar 

  28. Brostow W, Hagg Lobland HE (2010) J Mater Sci 45:242. doi:10.1007/s10853-009-3926-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Qin, Y., Cui, S. et al. Structure and properties of novel electrospun tussah silk fibroin/poly(lactic acid) composite nanofibers. J Mater Sci 46, 2938–2946 (2011). https://doi.org/10.1007/s10853-010-5169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5169-x

Keywords

Navigation