Skip to main content
Log in

Microwave assisted synthesis of barium zirconium titanate nanopowders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper reports the synthesis, structural and high frequency dielectric properties of Ba(Zr x Ti1−x )O3,BZT, nanopowders where x = 0, 0.1, 0.2, 0.3. These powders were synthesized using both microwave assisted and conventional heating, with the former requiring lower temperature and shorter times compared to the latter, viz., 700 °C for 30 min versus 900 °C for 5 h. The synthesized nanopowders were characterized using X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy, BET surface area analysis, differential scanning calorimetry and high frequency dielectric measurements. All the microwave synthesized BZT compositions were found to have well crystallized, finer nanoparticles with less agglomeration and higher dielectric permittivity compared to the conventionally prepared powders. The rapidity and less demanding processing conditions associated with the microwave assisted method augers well for the general applicability of the technique for the production of nanocrystalline powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1981) Piezoelectric ceramics. Academic Press, New York, p 271

    Google Scholar 

  2. Bernadi MLB, Antoneli E, Lourenco AB, Feitosa CAC, Maia LJQ, Hernades AC (2007) J Therm Anal Calorim 87:725

    Article  Google Scholar 

  3. Landolt-Bornstein (1981) Landolt-Bornstein numerical data and functional relationship in science and technology. Springer-Verlag, Berlin, vol III/28a, p 268; vol III/16a, p 422

  4. Hennings D, Schnell A (1982) J Am Ceram Soc 65:539

    Article  CAS  Google Scholar 

  5. Neirman SM (1988) J Mater Sci 23:3973. doi:10.1007/BF01106823

    Article  CAS  Google Scholar 

  6. McCauley D, Newnham RE, Randall CA (1998) J Am Ceram Soc 81:979

    Article  CAS  Google Scholar 

  7. Chen JF, Shen ZG, Liu FT, Liu XL, Yun J (2003) Scripta Mater 49:509

    Article  CAS  Google Scholar 

  8. Tang XG, Wang J, Wang XX, Chan HLW (2004) Solid State Commun 131:163

    Article  CAS  Google Scholar 

  9. Kumar M, Garg A, Kumar R, Bhatnagar MC (2008) Phys B 403:1819

    Article  CAS  Google Scholar 

  10. Reddy SB, Rao KP, Rao MSR (2007) Scripta Mater 57:591

    Article  CAS  Google Scholar 

  11. Outzourhit A, Idrissi Raghni MAE, Hafid ML, Bensamka F, Abdelkader O (2002) J Alloys Compd 340:214

    Article  CAS  Google Scholar 

  12. Gogotsi Y (2006) Nanomaterials handbook. Taylor & Francis, London, p 363

    Google Scholar 

  13. Binner J, Vaidhyanathan B (2008) J Eur Ceram Soc 28:1329

    Article  CAS  Google Scholar 

  14. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Chem Mater 11:882

    Article  CAS  Google Scholar 

  15. Janney MA, Kimrey HD (1991) Microwave processing of materials II. In: Snyder WB Jr, Sutton WH, Iskander MF, Johnson DL (eds) Materials Research Society Symposium Proceedings, vol 189, p 215

  16. Sutton WH (1992) Microwave processing of materials III. In: Beatty RL, Sutton WH, Iskander MF (eds) Materials Research Society Symposium Proceedings, vol 269, p 3

  17. Clark DE (1997) Microwaves: theory and application in materials processing IV. In: Clark D, Sutton WH, Lewis DA (eds) Ceramics Transactions, vol 80, p 61

  18. Robb GR, Harrison A, Whittaker AG (2002) Phys Chem Commun 19:135

    Google Scholar 

  19. Vinothini V, Singh P, Balasubramanian M (2006) Ceram Int 32:99

    Article  CAS  Google Scholar 

  20. Vaidhyanathan B, Wang J, Binner JGP, Raghavendra R (2003) The effect of conventional, microwave and hybrid heating on the sintering of ceramics. In: 9th international conference on microwave and high frequency heating, Loughborough, p 31

  21. Vaidhyanathan B, Annapoorani K, Binner JGP, Raghavendra R (2009) Ceram Eng Sci Proc 30:11

    CAS  Google Scholar 

  22. Wang J, Binner J, Vaidhyanathan B (2006) J Am Ceram Soc 89:1977

    Article  CAS  Google Scholar 

  23. Dimitrakis GA (2005) PhD Thesis, University of Nottingham

  24. Plonskii YA, Pavlova GA, Savel’ev VN, Milovidova TV, Vinogradov VB (1971) Glass Ceram 28:182

    Article  Google Scholar 

  25. Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, Bhalla AS (2001) J Raman Spectrosc 32:69

    Article  CAS  Google Scholar 

  26. Qi JQ, Wang Y, Chen WP, Li LT, Chan HTW (2006) J Nanoparticle Res 8:959

    Article  CAS  Google Scholar 

  27. Thakur OP, Prakash C, Agarwal DK (2002) Mater Sci Eng B96:221

    Article  CAS  Google Scholar 

  28. Sun W, Li J (2006) Mater Lett 60:1599

    Article  CAS  Google Scholar 

  29. Ho IC, Fu SL (1990) J Mater Sci 25:4699. doi:10.1007/BF01129927

    Article  CAS  Google Scholar 

  30. Asiaie R, Zhu W, Akbar SA, Dutta PK (1996) Chem Mater 8:226

    Article  CAS  Google Scholar 

  31. Fathi Z, Ahmed I, Simmons JH, Clark DE, Lodding AR (1991) Microwaves: theory and application in materials processing. In: Clark DE, Gac FD, Sutton WH (eds) Ceram Transactions, vol 21, p 623

  32. Hassine JGP, Hassine NA, Cross TE (1995) J Mater Sci 30:5389. doi:10.1007/BF00351548

    Article  Google Scholar 

  33. Rybakov KI, Semenov VE (1994) Phys Rev B 49:64

    Article  CAS  Google Scholar 

  34. Rybakov KI, Semenov VE (1995) Phys Rev B 52:3032

    Article  Google Scholar 

  35. Hanxing L, Yongwei L, Hanlin Z, Shixi O (1997) Sci China Ser A 40:843

    Article  Google Scholar 

  36. Zhang H, Ouyang S, Liu H, Li Y (1996) Microwave processing of materials V. In: Iskander MK, Kiggans JO, Bolomey JC (eds) Materials Research Society Symposium Proceedings, vol 430, p 447

  37. Vaidhyanathan B, Singh AP, Agrawal DK, Shrout TR, Roy R (2001) J Am Ceram Soc 84:1197

    Article  CAS  Google Scholar 

  38. Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954. doi:10.1007/s10853-006-0260-z

    Article  CAS  Google Scholar 

  39. Vaidhyanathan B, Raizada P, Rao KJ (1997) J Mater Sci Lett 16:2022

    Article  CAS  Google Scholar 

  40. Willert-Porada M, Bartusch W, Dhupia G, Müller G, Nagel A, Wötting G (2000) In: Müller G (ed) Ceramics-processing, reliability, tribology and wear. Euromat 12:87. Wiley-VCH, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors thank the EPSRC/TSB of the United Kingdom for the research funding and one of the authors (VV) thank the Science Faculty Fellowship Fund of the Loughborough University for her PhD scholarship. Thanks are also due to Dr. George A Dimitrakis of the Nottingham University, UK for timely help with the high frequency dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vaidhyanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinothini, V., Vaidhyanathan, B. & Binner, J. Microwave assisted synthesis of barium zirconium titanate nanopowders. J Mater Sci 46, 2155–2161 (2011). https://doi.org/10.1007/s10853-010-5052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5052-9

Keywords

Navigation