Skip to main content
Log in

Oxidation behavior and effect of oxidation on tensile properties of Ti60 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxidation behavior of a near-alpha Ti60 titanium alloy was investigated in the temperature range of 600–750 °C for up to 100 h exposure. The results showed that the oxidation kinetics of Ti60 alloy followed parabolic kinetics below 700 °C but parabolic-linear kinetics above 700 °C. The total activation energy was calculated to be 256 kJ/mol over the whole temperature range. The oxidation products were TiO2 after thermal exposure at 700 °C for 100 h, but a mixture of TiO2 and a small amount of Al2O3 for the specimens oxidized at 750 °C for 50 h. The grain boundaries were preferred sites for oxidation products formation during the oxidation. The tensile tests were performed at room temperature for specimens before and after oxidation. Both of the strength and ductility decreased for the specimens with oxide scale. However, both of them increased when the oxide scale was removed before testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kearns MW, Restall JE (1988) In: Lacombe P, Tricot R, Béranger G (eds) Sixth world conference on titanium, Les Editions de Physique, Paris, p 396

  2. Xiong HP, Mao W, Ma WL et al (2006) Mater Sci Eng A 433:108

    Article  Google Scholar 

  3. Zhang XJ, Gao YH, Ren BY et al (2010) J Mater Sci 45:1622. doi:10.1007/s10853-009-4138-8

    Article  CAS  Google Scholar 

  4. Cavalheiro AA, Bruno JC, Saeki MJ et al (2008) J Mater Sci 43:602. doi:10.1007/s10853-007-1743-2

    Article  CAS  Google Scholar 

  5. Hou XM, Liu XD, Guo M et al (2008) J Mater Sci 43:6193. doi:10.1007/s10853-008-2928-z

    Article  CAS  Google Scholar 

  6. Hajbagheri FA, Bozorg SFK, Amadeh AA (2008) J Mater Sci 43:5720. doi:10.1007/s10853-008-2890-9

    Article  CAS  Google Scholar 

  7. Leyens C, Peters M, Kaysser WA (1997) Surf Coat Technol 94–95:34

    Article  Google Scholar 

  8. Guleryuz H, Cimenoglu H (2009) J Alloys Compd 472(1–2):241

    Article  CAS  Google Scholar 

  9. Lee DH, Nam SW (1999) J Mater Sci 34:2843. doi:10.1023/A:1004627216837

    Article  CAS  Google Scholar 

  10. Li GP, Li D, Liu YY et al (1997) J Aeroesp Mater 17(4):21

    Google Scholar 

  11. Gurrappa I, Gogia AK (1999) In: Proceedings of the 5th National Convention on Corrosion, NACE International India Section, New Delhi, India

  12. Nogueira RA, Grandini CR, Claro APRA (2008) J Mater Sci 43:5977. doi:10.1007/s10853-008-2706-y

    Article  CAS  Google Scholar 

  13. Sai KV, Singh V (2004) Bull Mater Sci 27(4):347

    Article  Google Scholar 

  14. Leyens C, Peters M, Kaysser WA (1996) Mater Sci Technol 12:213

    Google Scholar 

  15. Cai BC, Liu PY, Tao Y (2000) J Mater Eng 8:34

    Google Scholar 

  16. Jia XY, Liu PY, Tao Y (2003) J Mater Eng 6:18

    Google Scholar 

  17. Kofstad P (1988) High temperature corrosion. Elsevier Applied Science, Essex

    Google Scholar 

  18. Frangini S, Mignone A, De Riccardis F (1994) J Mater Sci 29:714. doi:10.1007/BF00445984

    Article  CAS  Google Scholar 

  19. Velasco BG, Aswath PB (1998) J Mater Sci 33:2203. doi:10.1023/A:1004395908966

    Article  CAS  Google Scholar 

  20. Zhang EL, Zeng G, Zeng SY (2002) Scripta Metall 46:811

    Article  CAS  Google Scholar 

  21. Cui WF, Wei HR (1997) Rare Met Mater Eng 26(2):31

    CAS  Google Scholar 

  22. Johnson TJ, Loretto MH, Kearns MW (1993) In: Froes FH, Caplan I (eds) Titanium’92 Science and Technology, June 1992, TMS, Warrendale, San Diego, p 2035

  23. Gurrappa I, Manova D, Gerlach JW et al (2006) Surf Coat Technol 201:3536

    Article  CAS  Google Scholar 

  24. Meier GH, Appolonia D (1989) In: Grobstein T, Doychak J (eds) Oxidation of high temperature intermetallics. The Minerals, Metals and Materials Society, Cleveland, OH, p 185

  25. Xiong HP, Mao W, Xie YH et al (2005) Mater Sci Eng A 391:10

    Article  Google Scholar 

  26. Iizumi H, Fukai H (1998) In: Zhou L, Eylon D, Lutjering G, Ouchi O, (eds) Proceedings of Xi’an international titanium conference. International Academic Publishers, Beijing, China, p 526

  27. Cui WF, Bian WM, Luo GZ et al (1997) J Aeroesp Mater 17(4):15

    CAS  Google Scholar 

  28. Donlon WT, Allison JE, Lasecki JV (1992) In: Froes FH, Caplan I (eds) Titanium’92 Science and Technology, TMS, Warrendale, San Diego, p 295

  29. Garbacz H, Lewandowska M (2003) Mater Chem Phys 81(2–3):542

    Article  CAS  Google Scholar 

  30. Du HL, Datta PK, Lewis DB (1996) Oxid Met 45(5/6):507

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from the State Key Foundational Research Plan (Grant no. 2007CB613807) and the Program for New Century Excellent Talents in university (Grant no. NCE-07-0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, W., Zeng, W., Zhang, X. et al. Oxidation behavior and effect of oxidation on tensile properties of Ti60 alloy. J Mater Sci 46, 1351–1358 (2011). https://doi.org/10.1007/s10853-010-4926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4926-1

Keywords

Navigation