Skip to main content
Log in

Oxygen diffusion in Ti–10Mo alloys measured by mechanical spectroscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of interstitial elements in metals, as titanium and its alloys, causes alterations in their mechanical properties, making them either softer or harder, for example. The internal friction measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the oxygen diffusion in Ti–10Mo alloy by the analysis of the mechanical relaxation spectra, in the temperature range of 350–600 K. The relaxation structure obtained was analyzed by means of the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jafee RI, Promisel NE (1970) The science, technology and application of titanium. Pergamon Press, London

    Google Scholar 

  2. Donachie MJ (1988) Titanium—a technical guide. ASM, Ohio

    Google Scholar 

  3. Polmear IJ (1995) Light alloys, metallurgy of the light metals, 3rd edn. Edward Arnold, Great Britain

    Google Scholar 

  4. Souza AC, Grandini CR, Florêncio O (2008) J Mater Sci 43:1593. doi:https://doi.org/10.1007/s10853-007-2324-0

    Article  CAS  Google Scholar 

  5. Khan MA, Willians RL, Willians DF (1996) Biomaterials 17:2117. doi:https://doi.org/10.1016/0142-9612(96)00029-4

    Article  CAS  Google Scholar 

  6. Long M, Rack HJ (1998) Biomaterials 19:1621. doi:https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  CAS  Google Scholar 

  7. Guo H, Enamoto M (2002) Acta Mater 50:929. doi:https://doi.org/10.1016/S1359-6454(01)00392-5

    Article  CAS  Google Scholar 

  8. Ho WF, Ju CP, Lin JHC (1999) Biomaterials 20:2115. doi:https://doi.org/10.1016/S0142-9612(99)00114-3

    Article  CAS  Google Scholar 

  9. Alves APR, Santana FA, Rosa LAA et al (2004) Mater Sci Eng C 24:693. doi:https://doi.org/10.1016/j.msec.2004.08.013

    Article  Google Scholar 

  10. Snoek JL (1939) Physica 6:591. doi:https://doi.org/10.1016/S0031-8914(39)90061-3

    Article  CAS  Google Scholar 

  11. Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New York

    Google Scholar 

  12. Grandini CR (2002) Rev Bras Apl Vácuo 21:138

    Google Scholar 

  13. Florêncio O, Silva PS Jr, Grandini CR (2006) Diffus Defect Data A 258–260:137

    Article  Google Scholar 

  14. Grandini CR, Silva LM, Almeida LH et al (2008) Diffus Defect Data A 273–276:256

    Article  Google Scholar 

  15. Souza AC, Grandini CR, Florêncio O (2008) Diffus Defect Data A 273–276:261

    Article  Google Scholar 

  16. Weller M (1981) Acta Metall 29:1047. doi:https://doi.org/10.1016/0001-6160(81)90056-0

    Article  CAS  Google Scholar 

  17. Tikhomitrov V, Dyachkov U (1967) Zh Prikl Khim 4:245

    Google Scholar 

  18. Sokirianskii L, Ignatov D (1969) Fiz Met Metalloved 28:287

    Google Scholar 

  19. Rosa CJ (1970) Metall Trans 1:2617

    Google Scholar 

  20. Kofstad P, Andersson PB, Krudtaa OJ (1961) J Less Common Met 3:89. doi:https://doi.org/10.1016/0022-5088(61)90001-7

    Article  CAS  Google Scholar 

  21. Revyakin AV (1961) Izv Akad Nauk SSSR 5:113

    Google Scholar 

  22. Roe WP, Palmer HR, Opie WR (1960) Trans ASM 52:191

    CAS  Google Scholar 

  23. Hauffe K (1965) Oxidation of metals. Plenum Press, New York

    Google Scholar 

  24. Jenkis AE (1954) J Inst Met 82:213

    Google Scholar 

  25. Com-Nouguè J (1972) Thèse, Paris-Sud, Paris

  26. Feldman R, Déchamps M, Lehr P (1977) Métaux Corrosion Industrie 617:140

    Google Scholar 

  27. David D, Garcia EA, Lucas X, Beranger G (1979) J Less Common Met 65:51. doi:https://doi.org/10.1016/0022-5088(79)90152-8

    Article  CAS  Google Scholar 

  28. David D, Beranger G, Garcia EA (1983) J Eletroch Soc 130:1423. doi:https://doi.org/10.1149/1.2119966

    Article  CAS  Google Scholar 

  29. Güçlü FM, Çimenoglu H, Kayali ES (2006) Mater Sci Eng C 26:1367

    Article  Google Scholar 

  30. Niemeyer TC, Grandini CR, Florêncio O (2005) Mater Sci Eng A 396:285

    Article  Google Scholar 

  31. Cantelli R, Szkopiak ZC (1976) Appl Phys 9:153. doi:https://doi.org/10.1007/BF00903952

    Article  CAS  Google Scholar 

  32. Almeida LH, Niemeyer TC, Pires KCC et al (2004) Mater Sci Eng A 370:96

    Article  Google Scholar 

  33. Lutz T, Gerlach JW, Mändl S (2007) Surf Coat Technol 201:6690. doi:https://doi.org/10.1016/j.surfcoat.2006.09.102

    Article  CAS  Google Scholar 

  34. Peterson NL (1961) Diffusion in refractory metals. Wadd Technical Report

Download references

Acknowledgements

The authors would like to thank the Brazilian agencies, FAPESP and CNPq, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Grandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, R.A., Grandini, C.R. & Claro, A.P.R.A. Oxygen diffusion in Ti–10Mo alloys measured by mechanical spectroscopy. J Mater Sci 43, 5977–5981 (2008). https://doi.org/10.1007/s10853-008-2706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2706-y

Keywords

Navigation