Skip to main content

Advertisement

Log in

Effect of negative bias voltage on mechanical and electrochemical nature in Ti–W–N coatings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical and electrochemical surface properties of Si (100) and AISI D3 steel substrates-coated Ti–W–N, deposited by r.f. magnetron sputtering process from a binary (50% Ti, 50% W) target in an Ar/N2 (90%/10%) mixture, have been studied using nanoindentation, Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The crystallinity of the coatings was analyzed via X-ray diffraction (XRD) and the presence of TiN(111), TiN(200), WN2(107), and W2N(220) phases were determined. Depth sensing nanoindentation measurements were used to investigate the elasto-plastic behavior of Ti–W–N coatings. Each group of samples was deposited under the same experimental conditions (power supply, Ar/N2 gas mixture and substrate temperature), except the d.c. negative bias voltage that varied (0, −50, and −100 V) in order to study its effect on the mechanical and electrochemical properties of AISI D3 steel coated with Ti–W–N coatings. The measurements showed that the hardness and elastic modulus increase from 19 to 30 GPa and from 320 to 390 GPa, respectively, as a function of the increasing negative bias voltage. Coating track and coating-substrate debonding have been observed with atomic force microscopy (Asylum Research MFP-3D®) on the indentation sites. Finally, the corrosion resistance of Ti–W–N coatings in 3.5 wt% NaCl solution was obtained from electrochemical measurements in relation to the increase of the negative bias voltage. The obtained results have shown that at the higher negative bias voltage (−100 V), the steel coated with Ti–W–N coatings presented the lower corrosion resistance. The corrosion resistance of Ti–W–N in 3.5 wt% NaCl solution was studied in relation to the increase of the bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rich P, Burgess R, O’Sullivan J, Rimmer N (2004) US2004214417

  2. Yate L, Caicedo JC, Hurtado Macias A, Espinoza-Beltrán FJ, Zambrano G, Muñoz-Saldaña J, Prieto P (2009) Surf Coat Technol 203:904

    Article  Google Scholar 

  3. Amaya C, Aperador W, Caicedo JC, Espinoza-Beltrán FJ, Muñoz-Saldaña J, Zambrano G, Prieto P (2009) Corros Sci 51:2994

    Article  CAS  Google Scholar 

  4. Sanchéz JE, Sanchéz OM, Ipaz L, Aperador W, Caicedo JC, Amaya C, Hernández Landaverde MA, Espinoza Beltran F, Muñoz-Saldaña J, Zambrano G (2010) Appl Surf Sci 256:2380

    Article  Google Scholar 

  5. Caicedo JC, Amaya C, Yate L, Aperador W, Zambrano G, Gómez ME, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P (2010) Appl Surf Sci 256:2876

    Article  CAS  Google Scholar 

  6. Grizalez M, Martínez E, Caicedo JC, Heiras J, Prieto P (2008) Microelectron J 39:1308

    Article  CAS  Google Scholar 

  7. Castanho JM, Vieira MT (1998) Surf Coat Technol 102:50

    Article  CAS  Google Scholar 

  8. Zambrano G, Prieto P, Perez F, Rincon C, Galindo H, Cota-Araiza L, Esteve J, Martinez E (1998) Surf Coat Technol 108–109:323

    Article  Google Scholar 

  9. Rincon C, Zambrano G, Carvajal A, Prieto P, Galindo H, Martínez E, Lousa A, Esteve J (2001) Surf Coat Technol 148:277

    Article  CAS  Google Scholar 

  10. Louro C, Cavaleiro A (1999) Surf Coat Technol 116–119:74

    Article  Google Scholar 

  11. Cavaleiro A, Trindade B, Vieira MT (2003) Surf Coat Technol 174–175:68

    Article  Google Scholar 

  12. Marques AP, Cavaleiro A (2003) Thin Solid Films 441:150

    Article  CAS  Google Scholar 

  13. Piedade AP, Gomes MJ, Pierson JF, Cavaleiro A (2006) Surf Coat Technol 200:6303

    Article  CAS  Google Scholar 

  14. Moser JH, Tian F, Haller O, Bergstrom DB, Petrov I, Green JE, Wiemer C (1994) Thin Solid Films 253:445

    Article  CAS  Google Scholar 

  15. Oparowski JM, Quaranta DF, Biederman RR, Sisson, Jr, RD (1988) Microstruct Sci 16:379

  16. Hurkmans T, Trinh T, Lewis DB, Brooks JS, Munz W-D (1995) Surf Coat Technol 76–77:159

    Article  Google Scholar 

  17. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  Google Scholar 

  18. Shaginyan LR, Misina M, Zemek J, Musil J, Regent F, Britun VF (2002) Thin Solid Films 408:136

    Article  CAS  Google Scholar 

  19. Silva PN, Dias JP, Cavaleiro A (2005) Surf Coat Technol 200:186

    Article  CAS  Google Scholar 

  20. Anderson PM, Li C (1995) Nanostruct Mater 5(3):349

    Article  CAS  Google Scholar 

  21. Caicedo JC, Amaya C, Yate L, Zambrano G, Gómez ME, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P (2010) Appl Surf Sci 256:5898

    Article  CAS  Google Scholar 

  22. Brett CMA, Cavaleiro A (1998) Thin Solid Films 322:263

    Google Scholar 

  23. Navabpour P, Teer DG, Hitt DJ, Gilbert M (2006) Surf Coat Technol 201:3802

    Article  CAS  Google Scholar 

  24. Keller G, Barzen I, Erz R (1991) Fresen J Anal Chem 341:349

    Article  CAS  Google Scholar 

  25. Hajek V, Rusnak K, Vlcek J, Martinu L, Hawthorne HM (1997) Wear 213:80

    Article  CAS  Google Scholar 

  26. Kim GS, Lee SY, Hahn JH (2003) Surf Coat Technol 171:91

    Article  CAS  Google Scholar 

  27. Randles JEB (1947) Discuss Faraday Soc 1:11

    Google Scholar 

  28. Tato W, Landolt D (1998) J Electrochem Soc 145:4173

    Article  CAS  Google Scholar 

  29. Chang K-L, Chung S-C, Lai S-H, Shih H-C (2004) Appl Surf Sci 236:406

    Article  CAS  Google Scholar 

  30. Altun H, Sen S (2005) Surf Coat Technol 197:193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by COLCIENCIAS and by the Excellence Center for Novel Materials, CENM, under the RC-043-2005 contract with Colciencias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Caicedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caicedo, J.C., Yate, L., Cabrera, G. et al. Effect of negative bias voltage on mechanical and electrochemical nature in Ti–W–N coatings. J Mater Sci 46, 1244–1252 (2011). https://doi.org/10.1007/s10853-010-4904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4904-7

Keywords

Navigation