Skip to main content
Log in

Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epoxy nanocomposite suspensions including multi-wall carbon nanotubes (MWCNTs) and carbon black (CB) were produced and investigated by means of combined rheological and electrical analysis. The rheological percolation behaviour was compared to the electrical percolation behaviour. Due to similar dynamic agglomeration mechanisms the difference between the rheological and the electrical percolation threshold in the cured state is identical for MWCNT and CB filled systems. Non-covalent matrix–nanoparticle interactions in uncured epoxy suspensions are negligible since the onset of electrical and rheological percolation in the uncured state coincidence. Furthermore, the electrical percolation threshold in the cured state is always lower than in the uncured state because of the high tendency of CB and MWCNTs to form conductive networks during curing. The difference between rheological and electrical percolation threshold is dependent on the curing conditions. Thus, the rheological percolation threshold can be considered as an upper limit for the electrical percolation threshold in the cured state. Due to the formation of co-supporting networks multi-filler (MWCNTs and CB) suspensions exhibit a similar rheological behaviour as the binary MWCNT suspensions. For both types of suspensions a rheological percolation threshold of around 0.2 and 0.25 wt% was determined. Conversely, the binary CB nanocomposites exhibit a four-times higher percolation threshold of about 0.8 wt%. The difference between the binary MWCNT suspension and the ternary CB/MWCNT suspension in storage shear modulus at high filler concentrations (~0.8 wt%) turns out to be less than expected. Thus, synergistic effects in network formation are already present in the epoxy suspension and get more pronounced during curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thostenson ET, Li CY, Chou TW (2005) Compos Sci Technol 65:491

    Article  CAS  Google Scholar 

  2. Chung DDL (2004) J Mater Sci 39:2645. doi:10.1023/B:JMSC0000021439.1802.ea

    Article  CAS  Google Scholar 

  3. Winey KI, Kashiwagi T, Mu M (2007) MRS Bull 32:348

    CAS  Google Scholar 

  4. Ezquerra TA, Kulescza M, Baltá-Calleja FJ (1991) Synth Met 41:915

    Article  CAS  Google Scholar 

  5. Prasse T, Flandin L, Schulte K, Bauhofer W (1998) Appl Phys Lett 72:2903

    Article  CAS  Google Scholar 

  6. Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille J (1999) Phys Rev B 59:14349

    Article  CAS  Google Scholar 

  7. Ezquerra TA, Connor MT, Roy S, Kulescza M, Fernandes-Nascimento J, Baltá-Calleja FJ (2001) Compos Sci Technol 61:903

    Article  CAS  Google Scholar 

  8. Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61:1899

    Article  CAS  Google Scholar 

  9. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    Article  CAS  Google Scholar 

  10. Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689

    Article  CAS  Google Scholar 

  11. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  12. Chou T, Gao L, Thostenson ET, Zhang Z, Byun J (2010) Compos Sci Technol 70:1

    Article  CAS  Google Scholar 

  13. Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036

    Article  CAS  Google Scholar 

  14. Sumfleth J, Adroher XC, Schulte K (2009) J Mater Sci 44:3241. doi:10.1007/s10853-009-3434-7

    Article  CAS  Google Scholar 

  15. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967

    Article  CAS  Google Scholar 

  16. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186

    Article  CAS  Google Scholar 

  17. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486

    Article  CAS  Google Scholar 

  18. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Compos Sci Technol 64:2309

    Article  CAS  Google Scholar 

  19. Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Nat Mater 3:564

    Article  CAS  Google Scholar 

  20. Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Phys Status Solidi B 244:4223

    Article  CAS  Google Scholar 

  21. Alig I, Lellinger D, Engel M, Skipa T, Pötschke P (2008) Polymer 49:1902

    Article  CAS  Google Scholar 

  22. Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2010) Polymer 51:201

    Article  CAS  Google Scholar 

  23. Richter S, Grenzer M, Jehnichen D, Bierdel M, Heinrich G (2009) Express Polym Lett 3:753

    Article  CAS  Google Scholar 

  24. Fan Z, Advani SG (2007) J Rheol 51:585

    Article  CAS  Google Scholar 

  25. Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) J Rheol 50:599

    Article  CAS  Google Scholar 

  26. Shaffer MSP, Fan X, Windle AH (1998) Carbon 36:1603

    Article  CAS  Google Scholar 

  27. Shaffer MSP, Windle AH (1999) Macromolecules 32:6864

    Article  CAS  Google Scholar 

  28. Kinloch IA, Roberts SA, Windle AH (2002) Polymer 43:7483

    Article  CAS  Google Scholar 

  29. Xu JH, Chatterjee S, Koelling KW, Wang YR, Bechtel SE (2005) Rheol Acta 44:537

    Article  CAS  Google Scholar 

  30. Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Phys Rev Lett 93:1

    Article  Google Scholar 

  31. Hobbie EK, Fry DJ (2007) J Chem Phys 126:1

    Article  Google Scholar 

  32. Huang YY, Ahir SV, Terentjev EM (2006) Phys Rev B 73:125422

    Article  Google Scholar 

  33. Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247

    Article  Google Scholar 

  34. Abbasi S, Carreau PJ, Derdouri A (2010) Polymer 51:922

    Article  CAS  Google Scholar 

  35. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Carbon 44:778

    Article  CAS  Google Scholar 

  36. Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Chem Phys Lett 482:105

    Article  CAS  Google Scholar 

  37. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9048

    Article  CAS  Google Scholar 

  38. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Polymer 45:8863

    Article  Google Scholar 

  39. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG (2006) Polymer 47:480

    Article  CAS  Google Scholar 

  40. Alig I, Skipa T, Lellinger D, Pötschke P (2008) Polymer 49:3524

    Article  CAS  Google Scholar 

  41. Kotsilkova R, Fragiadakis D, Pissis P (2005) J Polym Sci B 43:522

    Article  CAS  Google Scholar 

  42. Song YS, Youn JR (2005) Carbon 43:1378

    Article  CAS  Google Scholar 

  43. Moisala A, Li Q, Kinloch IA, Windle AH (2006) Compos Sci Technol 66:1285

    Article  CAS  Google Scholar 

  44. Battisti A, Skordos AA, Partridge IK (2009) Compos Sci Technol 69:1516

    Article  CAS  Google Scholar 

  45. Allaoui A, El Bounia N (2010) Curr Nanosci 6:158

    Article  CAS  Google Scholar 

  46. Chapartegui M, Markaide N, Florez S, Elizetxea C, Fernandez M, Santamaria A (2010) Compos Sci Technol 70:879

    Article  CAS  Google Scholar 

  47. Alig I, Lellinger D, Dudkin SM, Pötschke P (2007) Polymer 48:1020

    Article  CAS  Google Scholar 

  48. Li J, Wong P, Kim JK (2008) Mater Sci Eng A 483:660

    Article  Google Scholar 

  49. Bokobza L, Rahmani M, Belin C, Bruneel JL, El Bounia N (2008) J Polym Sci B 46:1939

    Article  CAS  Google Scholar 

  50. Sun Y, Bao H, Guo Z, Yu J (2009) Macromolecules 42:459

    Article  CAS  Google Scholar 

  51. Ma P, Liu M, Zhang H, Wang S, Wang R, Wang K, Wong Y, Tang B, Hong S, Paik K, Kim J (2009) ACS Appl Mater Interfaces 1:1090

    Article  CAS  Google Scholar 

  52. Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Compos Sci Technol 64:2363

    Article  CAS  Google Scholar 

  53. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Compos Sci Technol 65:2300

    Article  CAS  Google Scholar 

  54. Wichmann MHG, Sumfleth J, Fiedler B, Gojny FH, Schulte K (2006) Mech Compos Mater 42:395

    Article  CAS  Google Scholar 

  55. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Compos Sci Technol 67:922

    Article  CAS  Google Scholar 

  56. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Composites A 36:1525

    Article  Google Scholar 

  57. Zhang W, Blackburn RS, Dehghani-Sanij AA (2007) Scripta Mater 56:581

    Article  CAS  Google Scholar 

  58. Deng H, Skipa T, Zhang R, Lellinger D, Bilotti E, Alig I, Peijs T (2009) Polymer 50:3747

    Article  CAS  Google Scholar 

  59. Wang M, Wang W, Liu T, Zhang W (2008) Compos Sci Technol 68:2498

    Article  CAS  Google Scholar 

  60. Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J (2008) J Appl Polym Sci 110:2094

    Article  CAS  Google Scholar 

  61. Krishnamoorti R, Giannelis EP (1997) Macromolecules 30:4097

    Article  CAS  Google Scholar 

  62. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  63. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) J Appl Phys 92:4024

    Article  CAS  Google Scholar 

  64. Sahimi M, Arbabi S (1993) Phys Rev B 47:703

    Article  Google Scholar 

  65. Head DA, MacKintosh FC, Levine AJ (2003) Phys Rev E 68:25101

    Article  CAS  Google Scholar 

  66. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933

    Article  Google Scholar 

  67. Rahatekar SS, Shaffer MSP, Elliott JA (2010) Compos Sci Technol 70:356

    Article  CAS  Google Scholar 

  68. Prasse T, Schwarz MK, Schulte K, Bauhofer W (2001) Colloid Surf A 189:183

    Article  CAS  Google Scholar 

  69. Zhang QH, Lippits DR, Rastogi S (2006) Macromolecules 39:658

    Article  Google Scholar 

  70. Schwarz M (2006) Cuvillier, Dissertation, TU Hamburg-Harburg

  71. Sheng P, Sichel EK, Gittleman JI (1978) Phys Rev Lett 40:1197

    Article  CAS  Google Scholar 

  72. Li C, Thostenson ET, Chou TW (2007) Appl Phys Lett 91:223114

    Article  Google Scholar 

  73. Rosca ID, Hoa SV (2009) Carbon 47:1958

    Article  CAS  Google Scholar 

  74. Lott J (2009) Dissertation, TU Hamburg-Harburg

Download references

Acknowledgements

The German Research Foundation (Deutsche Forschungsgemeinschaft) and its graduate school ‘Kunst und Technik’ at the Technische Universität Hamburg-Harburg is gratefully acknowledged for financial support (DFG GRK 1006/1). The companies Degussa-Evonik® and Arkema® are acknowledged for supplying the nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sumfleth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumfleth, J., Buschhorn, S.T. & Schulte, K. Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46, 659–669 (2011). https://doi.org/10.1007/s10853-010-4788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4788-6

Keywords

Navigation