Skip to main content
Log in

Crystallization kinetics of an amorphous Al75Ni10Ti10Zr5 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation and crystallization behaviors of a mechanically alloyed Al75Ni10Ti10Zr5 amorphous alloy were studied by X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry in the present study. The effective activation energy of the crystallization was determined by the Kissinger and Ozawa equations, respectively. The two equations yield close results and the average activation energy is 252 ± 13 kJ/mol. The resultant crystalline products were Al and Al3Ni, and the crystallization mechanism is two- or three-dimensional nucleation and growth controlled by the diffusion of atoms. The thermal stability of the alloy was evaluated by a continuous transformation diagram obtained by the extended Kissinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Greer AL (1995) Science 267:1947

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Guo FQ, Poon SJ, Shiflet GJ (2000) Mater Sci Forum 331–337:31

    Article  Google Scholar 

  3. He Y, Poon SJ, Shiflet GJ (1988) Science 241:1640

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Amini R, Hadianfard MJ, Salahinejad E, Marasi M, Sritharan T (2009) J Mater Sci 44:136. doi:10.1007/s10853-008-3117-9

    Article  CAS  ADS  Google Scholar 

  5. Prashanth KG, Scudino S, Surreddi KB, Sakaliyska M, Murty BS, Eckert J (2009) Mater Sci Eng A 513–514:279

    Google Scholar 

  6. Lin HM, Lin YW, Lee PY (2008) J Mater Sci 43:3118. doi:10.1007/s10853-008-2504-6

    Article  CAS  ADS  Google Scholar 

  7. Yang DK, Wen CE, Han FS, Yang YJ (2006) J Non-Cryst Solids 352:3244

    Article  CAS  ADS  Google Scholar 

  8. Wang Y, Chen XX, Geng HR, Yang ZX (2009) J Alloys Compd 474:152

    Article  CAS  Google Scholar 

  9. Bae DH, Lee MH, Kim DH, Sordelet DJ (2003) Appl Phys Lett 83:2312

    Article  CAS  ADS  Google Scholar 

  10. Lee MH, Bae DH, Kim DH, Sordelet DJ (2003) J Mater Res 18:2101

    Article  CAS  ADS  Google Scholar 

  11. Zhu J, Clavaguera-Mora MT, Clavaguera N (1997) Appl Phys Lett 70:1709

    Article  CAS  ADS  Google Scholar 

  12. Hay CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84:2901

    Article  ADS  Google Scholar 

  13. Inoue A (1998) Prog Mater Sci 43:365

    Article  CAS  Google Scholar 

  14. Gloriant T, Greer AL (1998) Nanostruct Mater 10:389

    Article  CAS  Google Scholar 

  15. Zhong ZC, Jiang XY, Greer AL (1997) Mater Sci Eng A 226–228:531

    Google Scholar 

  16. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  17. Samanta A, Manna I, Chattopadhyay PP (2007) Mater Sci Eng A 464:306

    Article  Google Scholar 

  18. Yue YZ (2008) J Non-Cryst Solids 354:1112

    Article  CAS  ADS  Google Scholar 

  19. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  20. Ozawa T (1970) J Therm Anal 2:301

    Article  CAS  Google Scholar 

  21. Kim DH, Kim WT, Kim DH (2004) Mater Sci Eng A 385:44

    Article  Google Scholar 

  22. Gogebakan M, Warren PJ, Cantor B (1997) Mater Sci Eng A 226–228:168

    Google Scholar 

  23. Prashanth KG, Scudino S, Murty BS, Eckert J (2009) J Alloys Compd 477:171

    Article  CAS  Google Scholar 

  24. Surreddi KB, Scudino S, Sakaliyska M, Prashanth KG, Sordelet DJ, Eckert J (2010) J Alloys Compd 491:137

    Article  CAS  Google Scholar 

  25. Kissinger HE (1956) J Res Natl Bur Stand 57:217

    CAS  Google Scholar 

  26. Ligero RA, Vázquez J, Villares P, Jiménez-Garay R (1989) Mater Lett 8:6

    Article  CAS  Google Scholar 

  27. Flynn JH (1983) J Therm Anal 27:95

    Article  CAS  Google Scholar 

  28. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  ADS  Google Scholar 

  29. Kaloshkin SD, Tomilin IA (1996) Thermochim Acta 280–281:303

    Article  Google Scholar 

  30. Hampel G, Pundt A, Hesse J (1992) J Phys Condens Matter 4:3195

    Article  CAS  ADS  Google Scholar 

  31. Barandiarán JM, Tellería I, Garitaonandía JS, Davies HA (2003) J Non-Cryst Solids 329:57

    Article  ADS  Google Scholar 

  32. Cserei A, Jiang J, Aubertin F, Gonser U (1994) J Mater Sci 29:1213. doi:10.1007/BF00975066

    Article  CAS  ADS  Google Scholar 

  33. Christian JW (2002) The theory of transformations in metals and alloys—parts I and II, 3rd edn. Pergamon, Oxford, UK

    Google Scholar 

  34. Lu W, Yan B, Hang WH (2005) J Non-Cryst Solids 351:3320

    Article  CAS  ADS  Google Scholar 

  35. Ranganathan S, Heimendahl MV (1981) J Mater Sci 16:2401. doi:10.1007/BF01113575

    Article  CAS  ADS  Google Scholar 

  36. Louzguine DV, Inoue A (2002) Scr Mater 47:887

    Article  CAS  Google Scholar 

  37. Louzguine DV, Inoue A (2002) Appl Phys Lett 81:2561

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China in the no. 2006CB601201, the National Natural Science Foundation of China in the no. 50871107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Wang, X., Wang, X. et al. Crystallization kinetics of an amorphous Al75Ni10Ti10Zr5 alloy. J Mater Sci 45, 6593–6598 (2010). https://doi.org/10.1007/s10853-010-4748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4748-1

Keywords

Navigation