Skip to main content
Log in

Abstract

We investigate the processes of crystallization and determined the structure and thermal properties of Al86Ni8Ho6 amorphous alloy in a wide temperature range. A three-stage nature of the crystallization process upon heating to a temperature of 700 K is found. According to data of high-temperature X-ray diffraction analysis, the crystallization of an Al86Ni8Ho6 amorphous ribbon is rather complex: aluminum crystallites grow in the amorphous phase to a temperature of 470 K, a Ho3Ni5Al19 phase is formed above 563 K, and a HoAl3 phase appears above 598 K. The phases of Ho3Ni5Al19 and HoAl3 are retained up to a temperature of 723 K. A three-stage kinetic model of the crystallization process with the reaction sequence is proposed based on calculations by multivariate nonlinear regression. The values of the total activation energy for each crystallization stage reach 239, 378, and 247 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. He, S. J. Poon, and G. J. Shiflet, Science (Washington, DC, U. S.) 241, 1640 (1988).

    Article  Google Scholar 

  2. Y. He, S. J. Poon, and G. J. Shiflet, Scr. Metall. 22, 1813 (1988).

    Article  Google Scholar 

  3. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn._J. Appl. Phys. Lett. 27, L280 (1988).

    Article  Google Scholar 

  4. A. Inoue, Prog. Mater. Sci. 43, 365 (1998).

    Article  Google Scholar 

  5. G. Hoekstra, S. B. Qadri, R. John, J. R. Scully, and J. M. Fitz-Gerald, Adv. Eng. Mater. 7, 805 (2005).

    Article  Google Scholar 

  6. E. Sansoucy, G. E. Kim, A. L. Moran, and B. Jodoin, J. Therm. Spray Technol. 16, 651 (2007).

    Article  Google Scholar 

  7. M. E. Goldman, N. Unlu, G. J. Shiflet, and J. R. Scully, Electrochem. Solid-State Lett. 8, B1 (2005).

    Article  Google Scholar 

  8. V. Ronto, L. Battezzati, A. R. Yavari, M. Tonegaru, N. Lupu, and G. Heunen, Scr. Mater. 50, 839 (2004).

    Article  Google Scholar 

  9. M. C. Gao and G. J. Shiflet, Scr. Mater. 53, 1129 (2005).

    Article  Google Scholar 

  10. M. C. Gao and G. J. Shiflet, Intermetallics 10, 1131 (2002).

    Article  Google Scholar 

  11. K. Nakazato, Y. Kawamura, A. P. Tsai, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 63, 2644 (1993).

    Article  Google Scholar 

  12. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai, and T. Masumoto, Mater. Trans., JIM 35, 95 (1994).

    Article  Google Scholar 

  13. J. C. Foley, D. R. Allen, and J. H. Perepezko, Scr. Mater. 35, 655 (1996).

    Article  Google Scholar 

  14. S. Omata, Y. Tanaka, T. Ishida, A. Sato, and A. Inoue, Philos. Mag. A 76, 387 (1997).

    Article  Google Scholar 

  15. A. P. Tsai, T. Kamiyama, Y. Kawamura, A. Inoue, and T. Masumoto, Acta Mater. 45, 1477 (1997).

    Article  Google Scholar 

  16. K. F. Kelton, Acta Mater. 48, 1967 (2000).

    Article  Google Scholar 

  17. K. F. Kelton, Philos. Mag. Lett. 77, 337 (1998).

    Article  Google Scholar 

  18. F. Q. Guo, S. J. Poon, and G. J. Shiflet, Scr. Mater. 43, 1089 (2000).

    Article  Google Scholar 

  19. M. C. Gao, F. Guo, S. J. Poon, and G. J. Shiflet, Mater. Sci. Eng., A 485, 532 (2008).

    Article  Google Scholar 

  20. A. Zhu, S. J. Poon, and G. J. Shiflet, Scr. Mater. 50, 1451 (2004).

    Article  Google Scholar 

  21. S. A. Uporov, N. S. Uporova, V. A. Bykov, T. V. Kulikova, and S. V. Pryanichnikov, J. Alloys Compd. 586 (Suppl. 1), 310 (2014).

    Article  Google Scholar 

  22. T. Kulikova, A. Belozerova, V. Bykov, R. Ryltsev, and A. Murzakaev, J. Non-Cryst. Solids 378, 135 (2013).

    Article  Google Scholar 

  23. S. A. Uporov, R. E. Ryl’tsev, N. S. Uporova, V. A. Bykov, A. M. Murzakaev, and S. V. Pryanichnikov, Fiz. Met. Metalloved. 116 (2), 136 (2015).

    Google Scholar 

  24. A. Inoue, H. Tomioka, and T. Masumoto, J. Mater. Sci. 18, 153 (1983).

    Article  Google Scholar 

  25. K. Song, X. Bian, X. Lv, J. Guo, G. Li, and M. Xie, Mater. Sci. Eng., A 506, 87 (2009).

    Article  Google Scholar 

  26. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  27. J. Opfermann, J. Therm. Anal. Calorim. 60, 641 (2000).

    Article  Google Scholar 

  28. C. Liu, J. Yu, X. Sun, J. Zhang, and J. He, Polym. Degrad. Stab. 81, 197 (2003).

    Article  Google Scholar 

  29. E. G. Prout and F. C. Tompkins, Trans. Faraday Soc. 40, 488 (1944).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kulikova.

Additional information

Original Russian Text © T.V. Kulikova, V.A. Bykov, A.A. Belozerova, K.Yu. Shunyaev, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 3, pp. 98–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, T.V., Bykov, V.A., Belozerova, A.A. et al. Crystallization kinetics of Al86Ni8Ho6 amorphous alloy. J. Surf. Investig. 10, 356–360 (2016). https://doi.org/10.1134/S1027451016020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016020117

Keywords

Navigation