Skip to main content
Log in

Electrochemical impedance spectroscopic characterization of the oxide film formed over low modulus Ti–35.5Nb–7.3Zr–5.7Ta alloy in phosphate buffer saline at various potentials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopic characterization of the low modulus Ti–35.5Nb–7.3Zr–5.7Ta alloy has been performed in phosphate buffer saline solution at 37 °C. Measurements were performed at various immersion intervals up to 720 h at OCP and also at various anodic potentials up to 2 V. The alloy exhibits a two time constant impedance response at the OCP and a one-time constant response at anodic potentials in the passive region. The thickness of the oxide film formed has been evaluated and the electrochemical interpretation of the results has been reported. Cyclic potentiodynamic profile of the alloy displays valve metal characteristics and the presence of a wide passive region that extends up to the maximum potential value of 2 V studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Biomaterials 25:3413

    Article  CAS  PubMed  Google Scholar 

  2. Nag S, Banerjee R, Stechschulte J, Fraser HL (2005) J Mater Sci Mater Med 16:679

    Article  CAS  PubMed  Google Scholar 

  3. Nag S, Banerjee R, Fraser HL (2005) Mater Sci Eng C 25:357

    Article  Google Scholar 

  4. Wagner K (1991) Clin Orthop 271:12

    Google Scholar 

  5. Okazaki Y, Rao S, Ito Y, Tateishi T (1998) Biomaterials 19:1197

    Article  CAS  PubMed  Google Scholar 

  6. Jatsy M (1993) J Appl Biomater 4:273

    Article  Google Scholar 

  7. Milosev I, Antolic V, Minovic A, Cor A, Herman S, Pavlovcic V, Campbell P (2000) J Bone Joint Surg Br 82-B:352

  8. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine: material science, surface science engineering biological responses and medical applications. Springer, Germany, p 25

    Google Scholar 

  9. Zardiackas LD, Kraay MJ, Freese HL (2005) Titanium, niobium zirconium and tantalum for medical and surgical applications. ASTM International, PA, USA, p 3

    Google Scholar 

  10. Karthega M, Raman V, Rajendran N (2007) Acta Biomater 3:1019

    Article  CAS  PubMed  Google Scholar 

  11. Valereto ICL, Wolynec S, Ramires I, Guastaldi AC, Costa I (2004) J Mater Sci Mater Med 15:55

    Article  Google Scholar 

  12. Ahmed TA, Long M, Silverstri J, Ruiz C, Rack HJ (1996) A new low modulus, biocompatible titanium alloy. In: Blenkinsop PA, Evans WJ, Flower HM (eds) Titanium’95. The Institute of Materials, p 1760

  13. Niinomi M, Kuroda D, Fukunaga K, Morinaga M, Kato Y, Yashiro T, Suzuki A (1999) Mater Sci Eng A263:193

    CAS  Google Scholar 

  14. Okazaki Y, Ito Y, Kyo K, Tateishi T (1996) Mater Sci Eng A213:138

    CAS  Google Scholar 

  15. Raman V, Nagarajan S, Rajendran N (2006) Electrochem Commun 8:1309

    Article  CAS  Google Scholar 

  16. Marino CEB, de Oliveira EM, Rocha-Filho RC, Biaggio SR (2001) Corros Sci 43:1465

    Article  CAS  Google Scholar 

  17. Hsu CH, Mansfeld F (2001) Technical note: concerning the conversion of the constant phase element parameter (Y0) into a capacitance. Corrosion 57:747

    Article  CAS  Google Scholar 

  18. Chongdar S, Gunasekaran G, Kumar P (2005) Electrochim Acta 50:4655

    Article  CAS  Google Scholar 

  19. Popova A, Raicheva S, Sokolova E, Christov M (1996) Langmuir 12:2083

    Article  CAS  Google Scholar 

  20. Rammelt U, Reinharf G (1987) Corros Sci 27:373

    Article  CAS  Google Scholar 

  21. Armstrong RD, Dickinson TD, Willis PM (1974) J Electroanal Chem Interfacial Electrochem 53:389

    CAS  Google Scholar 

  22. Shukla AK, Balasubramaniam R (2006) Corros Sci 48:1696

    Article  CAS  Google Scholar 

  23. Badawy WA, Fathi AM, El-Sherief RM, Fadl-Allah SA (2009) J Alloys Comp 475:911

    Article  CAS  Google Scholar 

  24. de Luiz Sergio A, Isolda C (2007) Mater Res 10:293

    Google Scholar 

  25. Blackwood DJ, Peter LM (1989) Electrochim Acta 34:1505

    Article  CAS  Google Scholar 

  26. Abdel-Rahim MA (1995) J Appl Electrochem 25:881

    Article  Google Scholar 

  27. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. NACE, Houston

    Google Scholar 

  28. Milosev I, Kosec T, Strehblow H-H (2008) Electrochim Acta 53:3547

    Article  CAS  Google Scholar 

  29. Ibris N, Mirza Rosca JC (2002) J Electroanal Chem 526:53

    Article  CAS  Google Scholar 

  30. Birch JR, Burleigh TD (2000) Corrosion 56:1233

    Article  CAS  Google Scholar 

  31. Marsh J, Gorse D (1998) Electrochim Acta 43(7):659

    Article  CAS  Google Scholar 

  32. Serruys Y, Sakout T, Gorse D (1993) Surf Sci 282:279

    Article  CAS  ADS  Google Scholar 

  33. Blackwood DJ (2000) Electrochim Acta 46:563

    Article  CAS  Google Scholar 

  34. Ohtsuka T, Otsuki T (1998) Corros Sci 40:951

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaily M. Bhola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhola, S.M., Bhola, R., Mishra, B. et al. Electrochemical impedance spectroscopic characterization of the oxide film formed over low modulus Ti–35.5Nb–7.3Zr–5.7Ta alloy in phosphate buffer saline at various potentials. J Mater Sci 45, 6179–6186 (2010). https://doi.org/10.1007/s10853-010-4711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4711-1

Keywords

Navigation