Skip to main content
Log in

Influence of directional solidification variables on the microstructure and crystal orientation of AM3 under high thermal gradient

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid–liquid interface morphologies of a nickel-base single crystal superalloy AM3 were investigated under high thermal gradient. The critical velocities of planar–cellular and cellular–dendritic transition were greatly increased by high thermal gradients. A high thermal gradient was of great benefit to dendrite refinement. Experimental results showed that the primary and secondary dendrite arm spacings decreased with increasing cooling rate. As expected, the segregation of elements was suppressed and the size of the gamma prime (γ′) phase decreased significantly with increasing withdrawal rates. The shape of γ′ in interdendritic region kept cuboidal at higher withdrawal rate. It was found that the withdrawal rates had little influence on the crystallographic orientation in high thermal gradient directional solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Durand-Charre M (1998) The microstructure of superalloys. CRC Press, Boca Raton

    Google Scholar 

  2. D’Souza N, Ardakani MG, Mclean M, Shollock BA (2000) Metall Mater Trans A 31:2877

    Article  Google Scholar 

  3. Kumar A, Dutta P (2009) J Mater Sci 44:3952. doi:10.1007/s10853-009-3539-z

    Article  CAS  ADS  Google Scholar 

  4. Madison J, Spowart JE, Rowenhorst DJ, Pollock TM (2008) JOM 60:26

    Article  CAS  Google Scholar 

  5. Tang JJ, Xue X (2009) J Mater Sci 44:745. doi:10.1007/s10853-008-3157-1

    Article  CAS  ADS  Google Scholar 

  6. Kurz W, Fisher DJ (1981) Acta Metall 29:11

    Article  CAS  Google Scholar 

  7. Trivedi R (1984) Metall Trans A 15:977

    Article  MathSciNet  Google Scholar 

  8. Hunt JD, Lu S-Z (1996) Metall Mater Trans A 27:611

    Article  Google Scholar 

  9. Hosch T, England LG, Napolitano RE (2009) J Mater Sci 44:4892. doi:10.1007/s10853-009-3747-6

    Article  CAS  ADS  Google Scholar 

  10. Clemens ML, Price A, Bellows RS (2003) JOM 55:27

    Article  CAS  Google Scholar 

  11. Elliott AJ, Tin S, King WT, Huang S-C, Gigliotti MFX, Pollock TM (2004) Metall Mater Trans A 35:3221

    Article  Google Scholar 

  12. Fu HZ, Geng XG (2001) Sci Technol Adv Mater 2:197

    Article  CAS  Google Scholar 

  13. Liu L, Huang TW, Zhang J, Fu HZ (2007) Mater Lett 61:227

    Article  CAS  Google Scholar 

  14. Caron P, Ohta Y, Nakagawa YG, Khan T (1988) In: Duhl DN et al (eds) Superalloys 1988. The Metallurgical Society, Warrendale, PA, p 215

    Google Scholar 

  15. Gunturi SSK, MacLachlan DW, Knowles DW (2000) Mater Sci Eng A 289:289

    Article  Google Scholar 

  16. Carter P, Cox DC, Gandin CA, Reed RC (2000) Mater Sci Eng A 280:233

    Article  Google Scholar 

  17. Ganesan S, Chan CL, Poirier DR (1992) Mater Sci Eng A 151:97

    Article  Google Scholar 

  18. Gündüz M, Çadırlı E (2002) Mater Sci Eng A 327:167

    Article  Google Scholar 

  19. Guo ZQ, Fu T, Fu HZ (2000) Mater Charact 44:431

    Article  CAS  Google Scholar 

  20. Caldwell EC, Fela FJ, Fuchs GE (2004) JOM 56:44

    Article  CAS  Google Scholar 

  21. Liu L, Zhang J, Huang TW, Fu HZ (2005) Mater Sci Forum 475–479:665

    Article  Google Scholar 

  22. Guo XP, Fu HZ, Sun JH (1997) Metall Mater Trans A 28:997

    Article  Google Scholar 

  23. Ma D, Sahm P (1998) Metall Mater Trans A 29:1113

    Google Scholar 

  24. Du W (1998) Ph.D. Thesis, Northwestern Polytechnical University (in Chinese)

  25. Li L, Overfelt RA (2002) J Mater Sci 37:3521. doi:10.1023/A:1016527509815

    Article  CAS  Google Scholar 

  26. Vijayakumar M, Tewari SN, Lee JE, Curreri PA (1991) Mater Sci Eng A 132:195

    Article  Google Scholar 

  27. Quested PN, McLean M (1980) In: Kirman I et al (eds) Conference on solidification technology in the foundry and cast house. The Metals Society, London, p 586

    Google Scholar 

  28. Kermanpur A, Varahraam N, Engilehei E, Mohammadzadeh M, Davami P (2000) Mater Sci Technol 16:579

    CAS  Google Scholar 

  29. Wilson BC, Cutler ER, Fuchs GE (2008) Mater Sci Eng A 479:256

    Google Scholar 

  30. Xiao JM (1987) Alloy phase and phase transformation. Metallurgical Industry Press, Beijing (in Chinese)

  31. Esaka H, Daimon H, Natsume Y, Ohsasa K, Tamura M (2002) Mater Trans 43:1312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 50771081) and the National Basic Research Program of China (2006CB605202) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Liu, L., Yu, Z. et al. Influence of directional solidification variables on the microstructure and crystal orientation of AM3 under high thermal gradient. J Mater Sci 45, 6101–6107 (2010). https://doi.org/10.1007/s10853-010-4696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4696-9

Keywords

Navigation