Skip to main content
Log in

The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The capacitive behaviors of calcium-carbide-derived carbon (CCDC) before and after nitric acid (HNO3) modification are investigated. The structure and morphology of the HNO3-modified CCDC (M-CCDC) are examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The performances of the supercapacitor using M-CCDC as electrode active material are studied by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy, and cycle life measurements. The results show that the capacitance of the supercapacitor increases from 154.7 to 196.5 F g−1 and the capacitance decay is only 1.3% over 10,000 cycles for the M-CCDC, which exhibits higher capacitive performance than the pristine CCDC electrode in the aqueous electrolyte solution. The superiority of the M-CCDC in capacitance properties is caused by the variations of surface wettability and the interstitial pore structure of CCDC, which results from the introduction of polar oxygen functional groups onto the CCDC surface by HNO3 modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Science 321:651

    Article  CAS  PubMed  Google Scholar 

  2. Miller JR, Burke AF (2008) Interface 17:44

    Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Burke A (2007) Electrochim Acta 53:1083

    Article  CAS  Google Scholar 

  5. Liu Y, Li KX, Wang JL, Sun GH, Sun CG (2009) J Mater Sci 44:4750. doi:10.1007/s10853-009-3710-6

    Article  CAS  ADS  Google Scholar 

  6. Gutiérrez MC, Picó F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, Monte FD, Rojo JM (2009) Mater J Chem 19:1236

    Article  Google Scholar 

  7. Tiemann M (2008) Chem Mater 20:961

    Article  CAS  Google Scholar 

  8. Kim Y-T, Tadai K, Mitani T (2005) J Mater Chem 15:4914

    Article  CAS  Google Scholar 

  9. Huang QH, Wang XY, Li J (2006) Electrochim Acta 52:1758

    Article  CAS  Google Scholar 

  10. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777

    Article  CAS  Google Scholar 

  11. Zhang H, Cao GP, Wang WK, Yuan K, Xu B, Zhang WF, Cheng J, Yang YS (2009) Electrochim Acta 54:1153

    Article  CAS  Google Scholar 

  12. Tamai H, Hakoda M, Shiono T, Yasuda H (2007) J Mater Sci 42:1293. doi:10.1007/s10853-006-1059-7

    Article  CAS  ADS  Google Scholar 

  13. Gogotsi Y, Welz S, Ersoy DA, McNallan MJ (2001) Nature 411:283

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730

    Article  CAS  PubMed  Google Scholar 

  15. Ma R, Liang J, Wei B, Zhang B, Xu C, Wu D (1999) J Power Sources 84:126

    Article  CAS  Google Scholar 

  16. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JMD, Lu GQ (2009) J Am Chem Soc 131:5026

    Article  CAS  PubMed  Google Scholar 

  17. Simon P, Burke A (2008) Interface 17:38

    CAS  Google Scholar 

  18. Dai CL, Wang XY, Wang Y, Li N, Wei JL (2008) Mater Chem Phys 112:461

    Article  CAS  Google Scholar 

  19. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619

    Article  CAS  Google Scholar 

  20. Gheybi H, Bagheri M, Alizadeh Z, Entezami AA (2008) Polym Adv Technol 19:967

    Article  CAS  Google Scholar 

  21. Béguin F, Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB (2007) Adv Funct Mater 17:1828

    Article  Google Scholar 

  22. Wang K, Wang Y, Wang Y, Hosono E, Zhou H (2009) J Phys Chem C 113:1093

    Article  CAS  Google Scholar 

  23. Li J, Wang XY, Huang QH, Dai CL, Gamboa S, Sebastian PJ (2007) J Appl Electrochem 37:1129

    Article  CAS  Google Scholar 

  24. Zhang J, Kong LB, Li H, Luo YC, Kang L J Mater Sci. doi:10.1007/s10853-009-4186-0

  25. Taberna PL, Portet C, Simon P (2006) Appl Phys A 82:639

    Article  CAS  ADS  Google Scholar 

  26. Xue Y, Chen Y, Zhang ML (2008) Mater Lett 62:3884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20871101), Key Project of Education Department of Hunan Province Government (Grant No. 2009WK2007) and Fund for the Doctoral Program of Higher Education of China (Grant No.20943011100 Research 05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Wang, Y., Wang, X. et al. The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide. J Mater Sci 45, 6030–6037 (2010). https://doi.org/10.1007/s10853-010-4687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4687-x

Keywords

Navigation