Skip to main content
Log in

Synthesis and relevant electrochemical properties of 2-hydroxypropyltrimethyl ammonium chloride chitosan-grafted multiwalled carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC)-grafted multiwalled carbon nanotubes (MWCNTs) composite (HACC–MWCNTs) was prepared via covalently grafting HACC onto the surfaces of MWCNT. The properties and morphology of the resulting materials were monitored by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results of FTIR and TGA indicated that the interaction between MWCNT and HACC was grafting through covalent links. TEM and SEM images confirmed MWCNT stained with an extra phase after the grafting process that was presumed to come from HACC. The dispersion of MWCNT in H2O was improved after the grafting of HACC,which was in agreement with the positive charge of HACC–MWCNT at any pH value. The electrochemical properties of HACC–MWCNT were investigated by cyclic voltammetry (CV). The dramatic improvement in the electrostatic interactions between HACC–MWCNT/electrode and anionic complexes was distinguished from the response of chitosan-MWCNT/electrode and non-modified electrode. According to the experimental results, the HACC–MWCNT had a possibility to serve as a novel material for innovative anionic sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Merkoçi A, Pumera M, Llopis X, Pérez B, Valle M, Alegret S (2005) Trends Anal Chem 24(9):826

    Article  Google Scholar 

  2. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624

    Article  CAS  Google Scholar 

  3. Carrara S, Shumyantseva VV, Archakov AI, Samor B (2008) Biosens Bioelectron 24:148

    Article  CAS  PubMed  Google Scholar 

  4. Buratti S, Brunetti B, Mannino S (2008) Talanta 76:454

    Article  CAS  PubMed  Google Scholar 

  5. Shobha Jeykumari DR, Ramaprabhu S, Sriman Narayanan S (2007) Carbon 45:1340

    Article  Google Scholar 

  6. Wei C, Srivastava D, Cho K (2004) Nano Lett 4:1949

    Article  CAS  ADS  Google Scholar 

  7. Wang J, Kawde A-N, Jan MR (2004) Biosens Bioelectron 20:995

    Article  CAS  PubMed  Google Scholar 

  8. Yogeswaran U, Chen S-M (2008) Sens Actuators B 130:739

    Article  Google Scholar 

  9. Guibal E (2005) Prog Polym Sci 30:71

    Article  CAS  Google Scholar 

  10. Chiou MS, Li HY (2003) Chemosphere 50:1095

    Article  CAS  PubMed  Google Scholar 

  11. Binsu VV, Nagarale RK, Shahi VK, Ghosh PK (2006) React Funct Polym 66:1619

    Article  CAS  Google Scholar 

  12. Tkac J, Whittaker JW, Ruzgas T (2007) Biosens Bioelectron 22:1820

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Tang J, Chen X, Xin JH (2005) Carbon 43:3178

    Article  CAS  Google Scholar 

  14. Wu Z, Feng W, Feng Y, Liu Q, Xu X, Sekino T et al (2007) Carbon 45:1212

    Article  CAS  Google Scholar 

  15. Kong H, Gao C, Yan D (2004) J Am Chem Soc 126(2):412

    Article  CAS  PubMed  Google Scholar 

  16. de Moura MR, Aouada FA, Mattoso LHC (2008) J Colloid Interface Sci 321:477

    Article  PubMed  Google Scholar 

  17. Anal AK, Tobiassen A, Flanagan J, Singh H (2008) Colloids Surf B 64:104

    Article  CAS  Google Scholar 

  18. Jansson-Charrier M, Guibal E, Roussy J, Delanghe B, Le Cloirec P (1996) Water Res 30(2):465

    Article  CAS  Google Scholar 

  19. Dzul Erosa MS, Saucedo Medina TI, Avarro Mendoza R, Avila Rodriguez M, Uibal E (2001) Hydrometallurgy 61:157

    Article  CAS  Google Scholar 

  20. Loubaki E, Ourevitch M, Sicsic S (1991) Eur Polym J 27(3):311

    Article  CAS  Google Scholar 

  21. Shieh Y-T, Yang Y-F (2006) Eur Polym J 42:3162

    Article  CAS  Google Scholar 

  22. Shen J, Huang W, Wu L, Hua Y, Ye M (2007) Mater Sci Eng A 464:151

    Article  Google Scholar 

  23. Yao H, Li N, Xu J-Z, Zhu J-J (2007) Talanta 71:550

    Article  CAS  PubMed  Google Scholar 

  24. Huang R, Chen G, Sun M, Hu Y, Gao C (2006) J Membr Sci 286:237

    Article  CAS  Google Scholar 

  25. Xiong J, Zheng Z, Qin X (2006) Carbon 44:2701

    Article  CAS  Google Scholar 

  26. Miao Z, Yang J, Wang L (2008) Mater Lett 62:3450

    Article  CAS  Google Scholar 

  27. Zheng Z, He P-J, Shao L-M (2007) Water Res 41:4696

    Article  CAS  PubMed  Google Scholar 

  28. Oki A, Adams L, Khabashesku V (2008) Mater Lett 62:918

    Article  CAS  Google Scholar 

  29. Chen E-C, Wu T-M (2007) Polym Degrad Stab 92:1009

    Article  CAS  Google Scholar 

  30. Li J, Tong L, Fang Z (2006) Polym Degrad Stab 91:2046

    Article  CAS  Google Scholar 

  31. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Polym Degrad Stab 93:952

    Article  CAS  Google Scholar 

  32. Kweon HY, Um IC, Park YH (2001) Polymer 42:6651

    Article  CAS  Google Scholar 

  33. Zohuriaan MJ, Shokrolahi F (2004) Polym Test 23:575

    Article  CAS  Google Scholar 

  34. Ko C-J, Lee C-Y, Ko F-H, Chen H-L, Chu T-C (2004) Microelectron Eng 73–74:570

    Article  Google Scholar 

  35. Chen C-M, Chen M, Peng Y-W, Lin C-H, Chang L-W, Chen C-F (2005) Diamond Relat Mater 14:798

    Article  CAS  Google Scholar 

  36. Zhang J, Wang Q, Wang L, Wang A (2007) Carbon 45:1911

    Article  Google Scholar 

  37. Liang R, Peng H, Qiu J (2008) J Colloid Interface Sci 320:125

    Article  CAS  PubMed  Google Scholar 

  38. Ojani R, Raoof J-B, Zarei E (2006) Electrochim Acta 52:753

    Article  CAS  Google Scholar 

  39. Emery SB, Hubbley JL, Roy D (2005) Electrochim Acta 50:5659

    Article  CAS  Google Scholar 

  40. Trasatti S, Petrii OA (1992) J Electroanal Chem 327:353

    Article  CAS  Google Scholar 

  41. Xiang C, Zou Y, Suna L-X, Xua F (2006) Electrochim Acta 51:5324

    Article  Google Scholar 

  42. Huang R, Chen G, Yang B, Gao C (2008) Sep Purif Technol 61:424

    Article  CAS  Google Scholar 

  43. Zangmeister RA, Park JJ, Rubloff GW, Tarlov MJ (2006) Electrochim Acta 51:5324

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (30571462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xiao, L. & Qin, C. Synthesis and relevant electrochemical properties of 2-hydroxypropyltrimethyl ammonium chloride chitosan-grafted multiwalled carbon nanotubes. J Mater Sci 45, 5915–5922 (2010). https://doi.org/10.1007/s10853-010-4671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4671-5

Keywords

Navigation