Skip to main content
Log in

Quantitative evaluation of high temperature deformation mechanisms: a specific microgrid extensometry technique coupled with EBSD analysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A microgrid extensometry method has been developed and used to obtain information about intragranular and intergranular creep mechanisms. An oxide grid was deposited on a creep specimen using an electron lithography technique. This oxide grid offers high backscattered electron contrast and can withstand long duration creep tests under vacuum in the 700–850 °C range without degradation. Specific methods were used to measure in-plane displacements at the grid nodes or at the grain boundaries using correlation of grid images taken before and after the creep test. The local strain and grain boundary sliding (GBS) data were then calculated. Combined information about grain boundary crystallography and GBS has been obtained by superimposing the electron backscattered diffraction (EBSD) map on the deformation maps. To illustrate the potential of this set of processes, two examples of application on a nickel-base disc superalloy are presented. The first one concerns the influence of the creep temperature on the local strain and the GBS. The second application quantitatively shows the influence of grain boundary character on GBS of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford, UK

    Google Scholar 

  2. Denison JP, Holmes PD, Wilshire B (1978) Mater Sci Eng 33:35

    Article  Google Scholar 

  3. Parker JD, Wilshire B (1977) Mater Sci Eng 29:219

    Article  CAS  Google Scholar 

  4. Karimi A (1984) Mater Sci Eng 63:267

    Article  CAS  Google Scholar 

  5. Carolan RA, Egashira M, Kishimoto S, Shinya N (1991) Mater T JIM 32(1):67

    CAS  Google Scholar 

  6. Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2007) Int J Plasticity 23:1512

    Article  MATH  Google Scholar 

  7. Pinna C, Beynon JH, Sellars CM, Bornert M (2000) In: Martin P et al (eds) Proceedings of conference on mathematical modelling in metal processing and manufacturing (COM 2000) (only CD)

  8. Soula A, Renollet Y, Boivin D, Pouchou J-L, Locq D, Caron P, Bréchet Y (2008) In: Reed RC et al (eds) Proceedings of superalloys 2008, p 387

  9. Soula A, Renollet Y, Boivin D, Pouchou J-L, Locq D, Caron P, Bréchet Y (2009) Mater Sci Eng A 510–511:301

    Google Scholar 

  10. Heinrich KFJ (1966) In: Castaing R et al (eds) Proceedings of the 4th international conference on X-ray optics and microanalysis X, p 159

  11. Reuter W (1972) In: Shinoda G et al (eds) Proceedings of the 6th international conf. on X-ray optics and microanalysis X, p 121

  12. Berztiss DA, Cerchiara RR, Gulbransen EA, Pettit FS, Meier GH (1992) Mater Sci Eng A 155:165

    Article  Google Scholar 

  13. Yanagihara K, Maruyama T, Nagata K (1996) Intermetallics 4(1):133

    Article  Google Scholar 

  14. Liu YQ, Shao G, Tsakiropoulos P (2001) Intermetallics 9:125

    Article  CAS  Google Scholar 

  15. Charlebois S (2002) PhD thesis, Sherbrooke, Canada

  16. George PL, Borouchaki H (1998) Triangulation and meshing application to finite elements. Hermes, Paris

    MATH  Google Scholar 

  17. Langdon TG (2006) J Mater Sci 41:597. doi:10.1007/s10853-006-6476-0

    Article  CAS  ADS  Google Scholar 

  18. Bell RL, Graeme-Barber C, Langdon TG (1967) T Metall Soc AIME 239(11):1821

    CAS  Google Scholar 

  19. Locq D, Marty M, Walder A, Caron P (2000) In: Morris DG et al (eds) Proceedings of euromat 99 intermetallics and superalloys, vol 10, p 52

  20. Viswanathan GB, Sarosi P, Henry M, Whitis D, Mills M (2004) In: Green KA et al (eds) Proceedings of superalloys 2004, p 173

  21. Locq D, Caron P, Raujol S, Pettinari-Sturmel F, Coujou A, Clément N (2004) In: Green KA et al (eds) Proceedings of superalloys 2004, p 179

  22. Kokawa H, Watanabe T, Karashima S (1983) J Mater Sci 18:1183. doi:10.1007/BF00551988

    Article  CAS  ADS  Google Scholar 

  23. Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A44(6):1239

    ADS  Google Scholar 

  24. Pond RC, Smith DA, Southerden PWJ (1978) Philos Mag A37(1):27

    ADS  Google Scholar 

  25. Kergaravat J-F (1996) PhD Thesis, Grenoble France

  26. Weinberg F (1958) T Metall Soc AIME 212:808

    CAS  Google Scholar 

  27. Priester L (1989) Rev Phys Appl 24:419

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Locq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soula, A., Locq, D., Boivin, D. et al. Quantitative evaluation of high temperature deformation mechanisms: a specific microgrid extensometry technique coupled with EBSD analysis. J Mater Sci 45, 5649–5659 (2010). https://doi.org/10.1007/s10853-010-4630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4630-1

Keywords

Navigation