Skip to main content
Log in

Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyelectrolyte complex nanoparticles of chitosan and carboxymethyl cashew gum (CMCG) were prepared with CMCG with two different degrees of substitution (DS = 0.16 and 0.36). The effects of polymer concentration, molar mixing ratio (n +/n ) and mixing order of reactants on particle size distribution and zeta potential were investigated. Nanoparticle structure was elucidated by Fourier transform spectroscopy. Particle size of CH/CMCG DS = 0.16 dispersions was smaller than with DS 0.36 for all n +/n ratio investigated. Particle size smaller than 200 nm was obtained when CMCG with DS = 0.16 was used for particle formation. The polydispersity index values were small when CMCG DS 0.36 was used. Increasing the concentration of CMCG led to larger particle size. Zeta potential values for almost all molar mixing ratios were found to be positive (10–32 mV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen H, Fan M (2007) J Bioact Compat Polym 22:475–490

    Article  CAS  Google Scholar 

  2. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007) Biomacromolecules 8:3054–3060

    Article  CAS  PubMed  Google Scholar 

  3. Du J, Dai J, Liu J-L, Dankovich T (2006) React Funct Polym 66:1055–1061

    Article  CAS  Google Scholar 

  4. Maciel JS, Silva DA, Paula RCM, Paula HCB (2005) Eur Polym J 41:2726–2733

    Article  CAS  Google Scholar 

  5. Magalhães GA Jr, Santos CMW, Silva DA, Maciel JS, Feitosa JPA, Paula HCB, de Paula RCM (2009) Carbohydr Polym 77:217–222

    Article  Google Scholar 

  6. Fundueanu G, Esposito E, Mihai D, Carpov A, Desbrieres J, Rinaudo M, Nastruzzi C (1998) Int J Pharm 170:11–21

    Article  CAS  Google Scholar 

  7. Li S, Wang XT, Zhang XR, Yang RJ, Zhang HZ, Zhu LZ, Hou XP (2002) J Controlled Rel 84:87–98

    Article  CAS  Google Scholar 

  8. Vasiliu S, Popa M, Rinaudo M (2005) Eur Polym J 41:923–932

    Article  CAS  Google Scholar 

  9. Sæther HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT (2008) Carbohydr Polym 74:813–821

    Article  Google Scholar 

  10. Gärdlund L, Wågberg L, Norgren M (2007) J Colloid Interface Sci 312:237–246

    Article  PubMed  Google Scholar 

  11. Hugerth A, Caram-Lelham N, Sundelof LO (1997) Carbohydr Polym 34:149–156

    Article  CAS  Google Scholar 

  12. Denuziere A, Ferrier D, Damour O, Domard A (1998) Biomaterials 19:1275–1285

    Article  CAS  PubMed  Google Scholar 

  13. Yan L, Qian F, Zhu Q (2001) Polym Int 50:1370–1374

    Article  CAS  Google Scholar 

  14. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) J Mater Sci 41:4974–4977. doi:10.1007/s10853-006-0118-4

    Article  CAS  ADS  Google Scholar 

  15. Zhang H, Wu C, Zhang Y, White CJB, Xue Y, Nie H, Zhu L (2010) J Mater Sci 45:2296–2304. doi:10.1007/s10853-009-4191-3

    Article  CAS  Google Scholar 

  16. Dautzenberg H (2001) In: Radeva T (ed) Physical chemistry of polyelectrolytes. CRC Press, New York, p 743

    Google Scholar 

  17. Ström G, Barla P, Stenius P (1985) Colloids Surf A 13:193–207

    Article  Google Scholar 

  18. Michaels AS, Miekka RG (1961) J Phys Chem 65:1765

    Article  CAS  Google Scholar 

  19. Schatz C, Lucas J, Domard A, Viton C, Pichot C, Delair T (2004) Langmuir 20:7766–7778

    Article  CAS  PubMed  Google Scholar 

  20. Schatz C, Domard A, Viton C, Pichot C, Delair T (2004) Biomacromolecules 5:1882–1892

    Article  CAS  PubMed  Google Scholar 

  21. Drogoz A, David L, Rochas C, Domard A, Delair T (2007) Langmuir 23:10950–10958

    Article  CAS  PubMed  Google Scholar 

  22. Lee KY, Park WH, Ha WS (1997) J Appl Polym Sci 63:425–432

    Article  CAS  Google Scholar 

  23. Bechéran-Marón L, Peniche-Covas C, Arguelles-Monal W (2004) Int J Biol Macromol 34:127–133

    Article  PubMed  Google Scholar 

  24. de Paula RCM, Rodrigues JF (1995) Carbohydr Polym 26:177–181

    Article  Google Scholar 

  25. de Paula RCM, Heatley F, Budd P (1998) Polym Int 45:27–35

    Article  Google Scholar 

  26. Silva DA, de Paula RCM, Feitosa JPA, de Brito ACF, Maciel JS, Paula HCB (2004) Carbohydr Polym 58:163–171

    Article  CAS  Google Scholar 

  27. Maciel JS, de Paula RCM, Paula HCB, Miranda MAR, Sassaki JM (2006) J Appl Polym Sci 99:326–334

    Article  CAS  Google Scholar 

  28. Gao YY, Chen XR, Liao B, Ding XB, Zheng ZH, Cheng X, Pang H, Peng YX (2006) Polym Bull 56:305–311

    Article  CAS  Google Scholar 

  29. Tapia C, Escobar Z, Costa E, Sapag-Hagar J, Valenzuela F, Basualto C, Gai MN, Yazdani M (2004) Eur J Pharm Biopharm 57:65–75

    Article  CAS  PubMed  Google Scholar 

  30. Sun W, Mao S, Mei D, Kissel T (2008) Eur J Pharm Biopharm 69:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Rede Nanoglicobiotec (Nanoglicobiotec Network), INOMAT/CNPq and FUNCAP and Prof. Fernando Galembeck (Grupo de Morfologia e Topoquímica de Sólidos) from UNICAMP/Brazil for SEM image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. M. de Paula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, D.A., Maciel, J.S., Feitosa, J.P.A. et al. Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. J Mater Sci 45, 5605–5610 (2010). https://doi.org/10.1007/s10853-010-4625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4625-y

Keywords

Navigation