Skip to main content

Polysaccharide-Based Nanoparticles

  • Chapter
  • First Online:
Food Nanoscience and Nanotechnology

Abstract

The use of natural polymers such as polysaccharides in the design of nanoparticles for the protection and delivery of bioactive compounds and nutrients has acquired great importance. These polymers have many advantages including biocompatibility, biodegradability and in some cases bioactivity. They are abundant in nature and are obtained from plant materials and crustacean exoskeletons. Polysaccharides which have been used for the preparation of nanoparticles include starch, dextran, cellulose, pectin, chitin, chitosan, alginates and carrageenans among others. There are also several methods to form the particles including ionotropic gelation, spraying, spray drying, acid hydrolysis, ultrasound, homogenization, etc. This chapter intends to review these techniques, the characteristics of the nanoparticles and some of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2010) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    Google Scholar 

  • Alais C, Linden G, Miclo L (2008) Biochimie alimentaire. Dunod, Paris

    Google Scholar 

  • Aswathy RG, Sivakumar B, Brahatheeswaran D, Raveendran S, Ukai T, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN (2012) Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol 3:254–261

    Article  CAS  Google Scholar 

  • Burapapadh K, Takeuchi H, Sriamornsak P (2012) Novel pectin-based nanoparticles prepared from nanoemulsion templates for improving in vitro dissolution and in vivo absorption of poorly water-soluble drugs. Eur J Pharmaceut Biopharmaceut 82:250–261

    Article  CAS  Google Scholar 

  • Calvo P, Remuñán-López C, Vila-Jato JL (1997) Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  • Capela P, Hay TKC, Shah NP (2007) Effect of homogenisation on bead size and survival of encapsulated probiotic bacteria. Food Res Int 40:1261–1269

    Article  CAS  Google Scholar 

  • Chin SF, Pang SC, Tay SH (2011) Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohyd Polim 86:1817–1819

    Article  CAS  Google Scholar 

  • De Belder AN (2003) Dextran. Amersham Biosciences, Uppsala

    Google Scholar 

  • Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohyd Polym 79:1073–1079

    Article  CAS  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loades with various metal ions. Carbohyd Polym 75:385–389

    Article  CAS  Google Scholar 

  • El-Shaboury MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    Article  Google Scholar 

  • Erbacher P, Zou S, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm. Res. 15:1332–1339

    Article  CAS  Google Scholar 

  • Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13

    Article  Google Scholar 

  • Kaya-Celiker H, Mallikarjunan K (2012) Better nutrients and therapeutics delivery in food through nanotechnology. Food Eng Rev 4:114–123

    Article  CAS  Google Scholar 

  • Kim JY, Yoon JW, Lim ST (2009) Formation and isolation of nanocrystal complexes between dextrins and n-butanol. Carbohyd Polym 78:626–632

    Article  CAS  Google Scholar 

  • Kofuji K, Nakamura M, Isobe T, Murata Y, Kawashima S (2008) Stabilization of a-lipoic acid by complex formation with chitosan. Food Chem 109:167–171

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  • Le Corre D Bras J Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Article  CAS  Google Scholar 

  • Lee KY, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66:869–873

    Article  CAS  Google Scholar 

  • Liu D, Wu Q, Chen H, Chang PR (2009) Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J Colloid Interface Sci 339:117–124

    Article  CAS  Google Scholar 

  • Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320

    Article  CAS  Google Scholar 

  • Machado AHE, Lundberg D, Ribeiro AJ, Veiga FJ, Lindman B, Miguel MG, Olsson U (2012) Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Langmuir 28:4131–4141

    Article  CAS  Google Scholar 

  • McConnell EL, Murdan S, Basit AW (2008) An investigation into the digestion of chitosan (noncrosslinked and crosslinked) by human colonic bacteria. J Pharm Sci 97:3820–3829

    Article  CAS  Google Scholar 

  • Mishra RK, Banthia AK, Majeed BA (2012) Pectin based formulations:a review. Asian J Pharmaceut Clin Res 5:1–7

    CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review:structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mørch ÝA Donati I Strand BL Skjåk-Bræk G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  Google Scholar 

  • Na Nakorn P (2008) Chitin nanowhisker and chitosan nanoparticles in protein immobilization for biosensor applications. J Met Mat Min 18:73–77

    Google Scholar 

  • Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behaviour. J. Control Release 25:89–98

    Article  CAS  Google Scholar 

  • Oliva M, Díez-Pérez I, Gorostiza P, Lastra CF, Herrera J, Oliva I, Mariño EL (2003) Preparation and characterization of l-carrageenan nanospheres containing dexchlorpheniramine maleate. In: Libro de Comunicaciones del VI Congreso de la Sociedad Española de Farmacia Industrial y Galénica, Granada, España, 2003

    Google Scholar 

  • Olivas-Armendáriz I, García-Casillas P, Martel-Estrada A, Martínez-Sánchez R, Martínez-Villafañe A, Martínez-Pérez CA (2009) Preparation and characterization of chitosan/carbon nanotubes composites. Rev Mex Ing Quim 8:205–211

    Google Scholar 

  • Pandey JK, Nakagaito AN, Takagi H (2013) Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym Eng Sci 53:1–8

    Article  CAS  Google Scholar 

  • Pulido A, Beristain CI (2010) Spray dried encapsulation of ascorbic acid using chitosan as wall material. Rev Mex Ing Quim 9:189–195

    CAS  Google Scholar 

  • Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339:2693–2700

    Article  CAS  Google Scholar 

  • Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  Google Scholar 

  • Racoviţǎ Ş Vasiliu S Popa M Luca C (2009) Polysaccharides based on micro- and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chimie 54:709–718

    Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Senthil V, Suresh Kumar R, Nagaraju CVV, Jawahar N, Ganesh GNK, Gowthamarajan K (2010) Design and development of hydrogel nanoparticles for mercaptopurine. J Adv Pharm Technol Res 1:334–337

    Article  CAS  Google Scholar 

  • Suksamran T, Opanasopit P, Rojanarata T, Ngawhirunpat T, Ruktanonchai U, Supaphol P (2009) Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J Microencapsul 26:563–570

    Article  CAS  Google Scholar 

  • Szymońska J, Targosz-Korecka M, Krok F (2009) Characterization of starch nanoparticles. J Phys Conf Ser 146:012027

    Article  Google Scholar 

  • Tan Y, Xu K, Li L, Liu C, Song C, Wang P (2009) Fabrication of size-controlled starch based nanospheres by nanoprecipitation. ACS Appl Mater Interfaces 1:956–959

    Article  CAS  Google Scholar 

  • Tang M, Dou H, Sun K (2006) One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly. Polymer 47:728–734

    Article  CAS  Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  • Tripathi S, Mehrotra GK, Dutta PK (2011) Chitosan-silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34:29–35

    Article  CAS  Google Scholar 

  • Velasco-Rodríguez V, Cornejo-Mazón M, Flores-Flores JO, Gutiérrez-López GF, Hernández-Sánchez H (2012) Preparation and properties of alpha-lipoic acid-loaded chitosan nanoparticles. Rev Mex Ing Quím 11:155–161

    Google Scholar 

  • Weerakody R, Fagan P, Kosaraju SL (2008) Chitosan microspheres for encapsulation of a-lipoic acid. Int J Pharm 357:213–218

    Article  CAS  Google Scholar 

  • Wu F, Zhou Z, Su J, Wei L, Yuan W, Jin T (2013) Develoipment of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res Lett 8:197–204

    Article  Google Scholar 

  • Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi M, Chauhan SC (2012) Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13:120–128

    Article  CAS  Google Scholar 

  • Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611

    Article  CAS  Google Scholar 

  • Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SES, Sani HT, Sadjadi SK (2010) A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotic Antimicro Prot 2:258–266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Hernández-Sánchez BSc, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

López-López, E., Hernández-Gallegos, M., Cornejo-Mazón, M., Hernández-Sánchez, H. (2015). Polysaccharide-Based Nanoparticles. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_4

Download citation

Publish with us

Policies and ethics