Skip to main content
Log in

Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Room temperature tensile test results of solution annealed 304 stainless steel at strain rates ranging between 5 × 10−4 and 1 × 10−1 s−1 reveal that with increase in strain rate yield strength increases and tensile strength decreases, both maintaining power–law relationships with strain rate. The decrease in tensile strength with increasing strain rate is attributed to the lesser amount of deformation-induced martensite formation and greater role of thermal softening over work hardening at higher strain rates. Tensile deformation of the steel is found to occur in three stages. The deformation transition strains are found to depend on strain rate in such a manner that Stage-I deformation (planar slip) is favoured at lower strain rate. A continuously decreasing linear function of strain rate sensitivity with true strain has been observed. Reasonably good estimation for the stress exponent relating dislocation velocity and stress has been made. The linear plot of reciprocal of strain rate sensitivity with true strain suggests that after some critical amount of deformation the increased dislocation density in austenite due to the formation of some critical amount of deformation-induced martensite plays important role in carrying out the imposed strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gallee S, Manach PY, Thuillier S (2007) Mater Sci Eng A 466:47

    Article  Google Scholar 

  2. Angel T (1954) J Iron Steel Inst 177:65

    Google Scholar 

  3. Talonen J, Nenonen P, Pape G, Hänninen H (2005) Metall Trans A 36:421

    Article  Google Scholar 

  4. De AK, Speer GJ, Matlock DK, Murdock DC, Mataya MC, Comstock RJ Jr (2006) Metall Trans A 37:1875

    Article  Google Scholar 

  5. Spencer K, Embury JD, Conlon KT, Veron M, Bréchet Y (2004) Mater Sci Eng A 387:873

    Article  Google Scholar 

  6. Lichtenfeld JA, Mataya MC, Van Tyne CJ (2006) Metall Trans A 37:147

    Article  Google Scholar 

  7. Powell GW, Marshall ER, Backofen WA (1958) ASM Trans Q 50:478

    Google Scholar 

  8. Okutani T, Yukawa N, Ishikawa K, Jinma T (1995) Proc Japanese Soc Tech Plast 1995 Spring, May 18–20, Tokyo, p 331

  9. Hecker SS, Stout MG, Staudhammer KP, Smith JL (1982) Metall Trans A 13:619

    Article  CAS  Google Scholar 

  10. Iwamoto T, Tsuta T, Tomita Y (1998) Int J Mech Sci 40:173

    Article  Google Scholar 

  11. Bressanelli JP, Moskowitz A (1966) Trans Am Soc Met 59:223

    CAS  Google Scholar 

  12. Murr LE, Staudhammer KP, Hecker SS (1982) Metall Trans A 13:627

    Article  CAS  Google Scholar 

  13. Lee WS, Lin CF (2001) Mater Sci Eng A 308:124

    Article  Google Scholar 

  14. Milititsky M, Wispelaere ND, Petrov R, Ramos JE, Reguly A, Hänninen H (2008) Mater Sci Eng A 498:289

    Article  Google Scholar 

  15. Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Mater Sci Eng A 390:334

    Article  Google Scholar 

  16. Stuwe HP, Les P (1998) Acta Mater 46:6375

    Article  CAS  Google Scholar 

  17. Chiou ST, Cheng WC, Lee WS (2005) Mater Sci Eng A 392:156

    Article  Google Scholar 

  18. Wang Y, Zhou Y, Xia Y (2004) Mater Sci Eng A 372:186

    Article  Google Scholar 

  19. Uenishi A, Teodosiu C (2003) Acta Mater 51:4437

    Article  CAS  Google Scholar 

  20. Ganesh Sundar Raman S, Padmanabhan KA (1994) Mater Sci Technol 10:610

    Google Scholar 

  21. Das A, Sivaprasad S, Ghosh M, Chakraborti PC, Tarafder S (2008) Mater Sci Eng A 486:283

    Article  Google Scholar 

  22. Das A, Sivaprasad S, Chakraborti PC, Tarafder S (2008) Mater Sci Eng A 496:98

    Article  Google Scholar 

  23. Feaugas X (1999) Acta Mater 47:3617

    Article  CAS  Google Scholar 

  24. Feaugas X, Haddou H (2003) Metall Trans A 34:2329

    Article  Google Scholar 

  25. Flinn JE, Field DP, Korth GE, Lillo TM, Macheret J (2001) Acta Mater 49:2065

    Article  CAS  Google Scholar 

  26. Narutani T, Takamura J (1991) Acta Metall Mater 39:2037

    Article  CAS  Google Scholar 

  27. Byun TS, Hashimoto N, Farrell K (2004) Acta Mater 52:3889

    Article  CAS  Google Scholar 

  28. Fang XF, Dahl W (1991) Mater Sci Eng A 141:189

    Article  Google Scholar 

  29. Lee TH, Oh CS, Kim SJ (2008) Scr Mater 58:110–113

    Article  CAS  Google Scholar 

  30. Bracke L, Kestens L, Penning J (2007) Scr Mater 57:385

    Article  CAS  Google Scholar 

  31. Dieter GE (1988) Mechanical metallurgy, SI metric edn. McGraw-Hill, London

  32. Narutani T (1989) Mater Trans JIM 30:33

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravash Chandra Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, A., Chakraborti, P.C. Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature. J Mater Sci 45, 5482–5489 (2010). https://doi.org/10.1007/s10853-010-4605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4605-2

Keywords

Navigation