Skip to main content
Log in

First principles computational study of wurtzite CdTe nanowires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An ab initio computational study was performed for wurtzite [0001] CdTe nanowires enclosed by \((10\bar{1}0)\) surface facets over a range of diameters and cross-sectional topologies. Calculations show that hexagonal nanowires are highly stable, possessing a large electronic band gap and a band structure without dispersionless states in the gap. Passivation of the dangling bonds for the largest hexagonal nanowire was found to have a minimal effect on the electronic structure, resulting in only a 0.05 eV increase in the band gap over the unpassivated nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alivisatos AP (1996) J Phys Chem B 100:13227

    Google Scholar 

  2. Kumar S, Nann T (2006) Small 2:316

    Article  CAS  PubMed  Google Scholar 

  3. Law M, Goldberger J, Yang P (2004) Annu Rev Mater Sci 43:83

    Article  ADS  Google Scholar 

  4. Yang P (2005) MRS Bull 30:85

    CAS  Google Scholar 

  5. Beach JD, McCandless BE (2007) MRS Bull 32:225

    CAS  Google Scholar 

  6. Wei SH, Zhang SB (2000) Phys Rev B 62:6944

    Article  CAS  ADS  Google Scholar 

  7. Yan Y, Al-Jassim MM, Jones KM, Wei SH, Zhang SB (2000) Appl Phys Lett 77:1461

    Article  CAS  ADS  Google Scholar 

  8. Neretina S, Mascher P, Hughes RA, Braidy N, Gong WH, Britten JF, Preston JS, Sochinskii NV, Dippo P (2006) Appl Phys Lett 88:133101

    Article  ADS  Google Scholar 

  9. Kumar S, Ade M, Nann T (2005) Chem Eur J 11:2220

    Article  CAS  Google Scholar 

  10. Neretina S, Hughes RA, Britten JF, Sochinskii NV, Preston JS, Mascher P (2007) Nanotechnology 18:275301

    Article  ADS  Google Scholar 

  11. Zakharov O, Rubio A, Blase X, Cohen ML, Louie SG (1994) Phys Rev B 50:10780

    Article  CAS  ADS  Google Scholar 

  12. Schrier J, Demchenko DO, Wang LW, Alivisatos AP (2007) Nano Lett 7:2377

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Sadowski T, Ramprasad R (2010) J Phys Chem C 114:1773

    Article  CAS  Google Scholar 

  14. Kamat PV (2008) J Phys Chem C 112:18737

    CAS  Google Scholar 

  15. Tian B, Kempa TJ, Lieber CM (2009) Chem Soc Rev 38:16

    Article  CAS  PubMed  Google Scholar 

  16. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  ADS  Google Scholar 

  17. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  ADS  Google Scholar 

  18. Leitsmann R, Ramos LE, Bechstedt F (2006) Phys Rev B 74:085309

    Article  ADS  Google Scholar 

  19. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  MathSciNet  ADS  Google Scholar 

  20. Yang JH, Chen S, Yin WJ, Gong XG, Walsh A, Wei SH (2009) Phys Rev B 79:245202

    Article  ADS  Google Scholar 

  21. Madelung OM (2004) Semiconductors: data handbook, 3rd edn. Springer, Berlin

    Google Scholar 

  22. Yu M, Fernando GW, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R (2006) App Phys Lett 88:231910

    Article  ADS  Google Scholar 

  23. Sadowski T, Ramprasad R (2007) Phys Rev B 76:235310

    Article  ADS  Google Scholar 

  24. dos Santos CL, Piquini P (2010) Phys Rev B 81:075408

    Article  ADS  Google Scholar 

  25. Li J, Wang LW (2005) Phys Rev B 72:125325

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support of this work through a grant from the National Science Foundation (NSF) and computational support through an NSF Teragrid Resource Allocation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadowski, T., Ramprasad, R. First principles computational study of wurtzite CdTe nanowires. J Mater Sci 45, 5463–5467 (2010). https://doi.org/10.1007/s10853-010-4599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4599-9

Keywords

Navigation