Skip to main content
Log in

Diameter Dependent Electronic, Optical and Transport Properties of CdSe Nanowire: Ab-Initio Study

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We report the Density functional theory (DFT) based investigations of diameter dependent electronic and optical properties of CdSe nanowire (CdSe-NW) in its wurtzite phase. The DFT calculations are based on generalized gradient approximation, Perdew Burke and Ernzerhof (PBE) type parameterization and localized double-\(\zeta \) polarized (DZP) orbital basis set. The cohesive energy, electronic band structure, Young’s modulus and effective mass have been calculated for different diameter 5.56, 14.00, and 22.60 Å CdSe nanowires. Larger diameter shows bandgap lowering and higher zero bias conductance in comparison to its small diameter counterparts. Interfrontier orbital analysis for diametrically large nanowire reveals dispersion of canonical orbital across the cross-section of nanowire, hence supporting high charge carrier mobility. Computation of dielectric function for the Optical properties analysis, confirms the broad band absorption and low reflectivity of these nanowires in photonic field. Transport properties of CdSe nanowire have been analysed in terms of transmission spectra and current-voltage characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. B. Greytak, J. L. Lincoln, S. G. Mark, and M. L. Charles, Appl. Phys. Lett. 84, 4176 (2004).

    Article  ADS  Google Scholar 

  2. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  ADS  Google Scholar 

  3. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, and C. M. Lieber, Nature (London, U. K.) 449, 885 (2007).

    Article  ADS  Google Scholar 

  4. M. Nolan, S. O’Callaghan, G. Fagas, J. C. Greer, and T. Frauenheim, Nano Lett. 7, 34 (2007).

    Article  ADS  Google Scholar 

  5. N. Tyagi, A. Srivastava, and R. Pandey, J. Comput. Theor. Nanosci. 11, 1367 (2014).

    Article  Google Scholar 

  6. A Srivastava, N. Tyagi, and R. K. Singh, J. Comput. Theor. Nanosci. 8, 1418 (2011).

    Article  Google Scholar 

  7. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science (Washington, DC, U. S.) 295, 2425 (2002).

    Article  ADS  Google Scholar 

  8. Y. H. Yu, P. V. Kamat, and M. A. Kuno, Adv. Funct. Mater. 20, 1464 (2010).

    Article  Google Scholar 

  9. P. Nayebi, M. E. Razavi, and E. Zaminpayma, J. Phys. Chem. C 120, 4589 (2016).

    Article  Google Scholar 

  10. P. Nayebi, K. Mirabbaszadeh, and M. Shamshirsaz, Comput. Mater. Sci. 89, 198 (2014).

    Article  Google Scholar 

  11. P. Vajeeston, P. Ravindran, and H. Fjellvåg, Nanotechnology 19, 275704 (2008).

    Article  Google Scholar 

  12. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Article  Google Scholar 

  13. G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett. 10, 1088 (2010).

    Article  ADS  Google Scholar 

  14. W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, and L. M. Peng, J. Am. Chem. Soc. 130, 1124 (2008).

    Article  Google Scholar 

  15. S. C. Erwin, L. J. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature (London, U. K.) 436, 91 (2005).

    Article  ADS  Google Scholar 

  16. Y. Huang, X. F. Duan, and C. M. Lieber, Small 1, 142 (2005).

    Article  Google Scholar 

  17. R. G. Xie, U. Kolb, J. X. Li, T. Basche, and A. Mews, J. Am. Chem. Soc. 127, 7480 (2005).

    Article  Google Scholar 

  18. C. H. Cho, C. O Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, Nat. Mater. 10, 669 (2011).

    Article  ADS  Google Scholar 

  19. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).

    Article  ADS  Google Scholar 

  20. R. Agarwal, C. J. Barrelet, and C. M. Lieber, Nano Lett. 5, 917 (2005).

    Article  ADS  Google Scholar 

  21. A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, Nano Lett. 9, 784 (2009).

    Article  ADS  Google Scholar 

  22. B. Piccione, L. K. van Vugt, and R. Agarwal, Nano Lett. 10, 2251 (2010).

    Article  ADS  Google Scholar 

  23. L. K. van Vugt, B. Piccione, C. H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, J. Phys. Chem. A 115, 3827 (2011).

    Article  Google Scholar 

  24. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, Nano Lett. 7, 3300 (2007).

    Article  ADS  Google Scholar 

  25. Y. Zhang, Y. Tang, K. Lee, and M. Ouyang, Nano Lett. 9, 437 (2008).

    Article  ADS  Google Scholar 

  26. H. Wu, F. Meng, L. Li, S. Jin, and G. Zheng, ACS Nano 6, 4466 (2012).

    Google Scholar 

  27. M. S. Khan and A. Srivastava, Superlatt. Microstruct. 101, 306 (2017).

    Article  ADS  Google Scholar 

  28. H. Huan, L. Chen, and X. Ye, Nanoscale Res. Lett. 12, 178 (2017).

    Article  ADS  Google Scholar 

  29. www.quantumwise.com

  30. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

    Article  ADS  Google Scholar 

  31. Y. Zhao and D. G. Truhlar, J. Chem Phys. 130, 074103 (2009).

    Article  ADS  Google Scholar 

  32. D. Fritsch, B. J. Morgan, and A. Walsh, Nano Res. Lett. 12, 19 (2017).

    Article  Google Scholar 

  33. C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, Phys. Rev. B 83, 195301 (2011).

    Article  ADS  Google Scholar 

  34. Yu. Zhang, X. Yuan, X. Sun, B.-Ch. Shih, P. Zhang, and W. Zhang, Phys. Rev. B 84, 075127 (2011).

    Article  ADS  Google Scholar 

  35. Y. Y Zhang, S. Chen, P. Xu, H. Xiang, X. G. Gong, A. Walsh, and Su. H. Wei, Chin. Phys. Lett. 35, 036104 (2018).

    Article  ADS  Google Scholar 

  36. L. Zhou, Y. Guo, and J. Zhao, Phys. E (Amsterdam, Neth.) 95, 149 (2018).

  37. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  38. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).

    Article  Google Scholar 

  39. S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, Cambridge, UK, 2005).

    Book  MATH  Google Scholar 

  40. A. Szemjonov, T. Pauporté, I. Ciofini, and F. Labat, Phys. Chem. Chem. Phys. 16, 23251 (2014).

    Article  Google Scholar 

  41. J. M. G. Hernández, A. S. Castillo, L. M. de la Garza, and G. H. Cocoletzi, Bull. Mater. Sci. 40, 1111 (2017).

    Article  Google Scholar 

  42. D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, Appl. Phys. Lett. 93, 073114 (2008).

    Article  ADS  Google Scholar 

  43. B. Wang, S. Yin, G. Wang, A. Buldum, and J. Zhao, Phys. Rev. Lett. 86, 2046 (2001).

    Article  ADS  Google Scholar 

  44. Si. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, Nano Lett. 9, 4548 (2009).

    Article  ADS  Google Scholar 

  45. B. Santhi Bhushan, A. Srivastava, M. S. Khan, A. Srivastava, and S. G. Said, IEEE Trans. Electron. Dev. 63, 4899 (2016).

    Article  ADS  Google Scholar 

  46. J. A. Yan, Li Yang, and M. Y. Chou, Phys. Rev. B 76, 115319 (2007).

    Article  ADS  Google Scholar 

  47. T. Stelzner, M. Pietsch, G. Andria, F. Falk, E. Ose, and S. Christiansen, Nanotechnology 19, 295203 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Department of Science and Technology for the financial support to one of the authors, Md. Shahzad Khan for his RA position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Srivastava, A. Diameter Dependent Electronic, Optical and Transport Properties of CdSe Nanowire: Ab-Initio Study. Semiconductors 53, 1759–1768 (2019). https://doi.org/10.1134/S1063782619130104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130104

Keywords:

Navigation