Skip to main content
Log in

Applicability of the polymeric precursor method to the synthesis of nanometric single- and multi-layers of Zn1−x Mn x O (x = 0–0.3)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymeric precursor method (Pechini) was employed to fabricate single- and multilayers of Zn1−x Mn x O (x = 0–0.3) on glass substrates. X-ray diffraction measurements revealed that crystal structure of Zn1−x Mn x O multilayers is the typical hexagonal würzite structure of pristine ZnO. A reduced peak intensity and widened full width half maximum (FWHM) value of prominent peaks suggested that the Mn2+ ions have substituted the Zn2+ ion without changing the würzite structure of pristine ZnO up to Mn concentrations x ≤ 0.2. A distinct redshift of the absorption edge was observed as the Mn concentration x was increased. Additionally, the absorption edge was less sharp due, probably, to sd and pd interactions, which give rise to band gap bowing. Nevertheless, amorphous states appearing in the band gap as a consequence of reduced crystallinity may also be responsible for the shrinking of the band gap in this material. Interestingly, the field dependence of the magnetization showed typical paramagnetic behavior for all the chosen Mn concentrations with no evidence of ferromagnetic ordering. Probably, the absence of ferromagnetism in the studied Zn1−x Mn x O films is strongly related to defects (say Mn impurities at the interface between nano-crystallites) in ZnO due to partial substitution of host Zn ions by Mn ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blasco J, Bartolomé F, García LM, García J (2006) J Mater Chem 16:2282

    Article  Google Scholar 

  2. Matsuda A, Akiba S, Kasahara M, Watanabe T, Akita Y, Kitamoto Y, Tojo T, Kawaji H, Atake T, Koyama K, Yoshimoto M (2008) Thin Solid Films 516:3873

    Article  ADS  Google Scholar 

  3. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  PubMed  ADS  Google Scholar 

  4. Sato K, Katayama-Yoshida H (2001) Jpn J Appl Phys 40:L334

    Article  ADS  Google Scholar 

  5. Mandal SK, Das AK, Nath TK, Karmakar D, Satpati B (2006) J Appl Phys 100:104315

    Article  ADS  Google Scholar 

  6. Miah MI, Gray EM (2008) Solid State Sci 10:205

    Article  ADS  Google Scholar 

  7. Venkatesan M, Fitzgerald CB, Lunney JG, Coy M (2004) Phys Rev Lett 93:77206

    Article  ADS  Google Scholar 

  8. Kim JH, Kim H, Kim D, Ihm Y, Choo WR (2004) J Eur Ceram Soc 24:1847

    Article  Google Scholar 

  9. Muth JF, Kolbas RM, Sharma AK, Oktyabrsky S, Narayan J (1999) J Appl Phys 85:7884

    Article  ADS  Google Scholar 

  10. Elanchezhiyan J, Bhuvana KP, Gopalakrishnan N, Balasubramanian T (2008) Mater Lett 62:3379

    Article  Google Scholar 

  11. Elanchezhiyan J, Bhuvana KP, Gopalakrishnan N, Balasubramanian T (2008) J Alloys Compd 463:84

    Article  Google Scholar 

  12. Pivin JC, Soco G, Mihailescu I, Berthet P, Singh F, Patel MK, Vincent L (2008) Thin Solid Films 517:616

    Article  Google Scholar 

  13. Smolentsev N, Soldatov AV, Smolentsev G, Weib SQ (2009) Solid State Commun 149:1803

    Article  ADS  Google Scholar 

  14. Yoon SH, Liu D, Shen D, Park M, Kim D-J (2008) J Mater Sci 43:6177. doi:10.1007/s10853-008-2929-y

    Article  ADS  Google Scholar 

  15. Natsume Y, Sakata H (2000) Thin Solid Films 372:30

    Article  ADS  Google Scholar 

  16. Segal D (1997) J Mater Chem 7:1297

    Article  Google Scholar 

  17. Yang Z, Liu Q-H (2008) J Mater Sci 43:6527. doi:10.1007/s10853-008-2852-2

    Article  ADS  Google Scholar 

  18. Nanto H, Sokooshi H, Kawai T, Usuda T (1992) J Mater Sci Lett 11:235

    Article  Google Scholar 

  19. Liu Y, Yang S-H, Zhang Y-L, Bao D-H (2009) J Magn Magn Mater 321:3406

    Article  ADS  Google Scholar 

  20. Pechini MP (1967) U.S. Patent, No 3330697, 11 July 1967

  21. Ohyama M, Kozuka H, Yoko T, Sakka S (1996) J Ceram Soc Jpn 104:296

    Google Scholar 

  22. Brus LE (1984) J Chem Phys 80:4403

    Article  ADS  Google Scholar 

  23. Lin K, Tsai P (2007) Thin Solid Films 515:8601

    Article  ADS  Google Scholar 

  24. Singh P, Kaushal A, Kaur D (2009) J Alloys Compd 471:11

    Article  Google Scholar 

  25. Zhang DH, Brodie DE (1994) Thin Solid Films 238:95

    Article  ADS  Google Scholar 

  26. Zhao JL, Lia XM, Bian JM, Yua WD, Gao XD (2005) J Cryst Growth 276:507

    Article  ADS  Google Scholar 

  27. Alaria J, Bouloudenine M, Schmerber G, Colis S, Dinia A (2006) J Appl Phys 99:08M118

    Article  Google Scholar 

  28. Senthilkumaar S, Rajendran K, Banerjee S, Chini TK, Sengodan V (2008) Mater Sci Semicond Process 11:6

    Article  Google Scholar 

  29. Pike GE, Seager CH (1979) J Appl Phys 50:3414

    Article  ADS  Google Scholar 

  30. Hirae S, Hirose M, Osaka Y (1980) J Appl Phys 51:1043

    Article  ADS  Google Scholar 

  31. Laughlin RB, Joannopoulos JD, Chali DJ (1978) In: Pantilides ST (ed) The physics of SiO2 and its interfaces. Pergamon, New York, p 321

    Google Scholar 

  32. Srikant V, Clarke R (1997) J Appl Phys 81:6357

    Article  ADS  Google Scholar 

  33. Fukumura T, Jin Z, Ohtomo A, Koinuma H, Kawasaki M (1999) Appl Phys Lett 75:3366

    Article  ADS  Google Scholar 

  34. Lin YB, Yang YM, Zhao GY, Chen W, Huang ZG (2010) Physica B 405:322

    Article  ADS  Google Scholar 

  35. Wang JB, Huang GJ, Zhong XL, Sun LZ, Zhou YC (2006) Appl Phys Lett 88:252502

    Article  ADS  Google Scholar 

  36. Hong NH, Sakai J, Huong NT, Poirot N, Ruyter A (2005) Phys Rev B 75:045336

    Article  ADS  Google Scholar 

  37. Yang JH, Zhao LY, Zhang YJ, Wang YX, Liu HL, Wei MB (2007) Solid State Commun 143:566

    Article  ADS  Google Scholar 

  38. Wang ZH, Geng DY, Zhang ZD (2009) Solid State Commun 149:682

    Article  ADS  Google Scholar 

  39. Schwarz DA, Gamelin DR (2004) Adv Mater (Weinheim, Ger) 16:2115

    Article  Google Scholar 

  40. Radovanovic PV, Gamelin DR (2003) Phys Rev Lett 91:157202

    Article  PubMed  ADS  Google Scholar 

  41. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Nat Mater 4:173

    Article  PubMed  ADS  Google Scholar 

  42. Sharma P, Guptai A, Rao KV, Owens FJ, Sharma R, Ahuja R, Guillen JMO, Johansson B, Gehring GA (2003) Nat Mater 2:673

    Article  PubMed  ADS  Google Scholar 

  43. Spaldin NA (2004) Phys Rev B 69:125201

    Article  ADS  Google Scholar 

  44. Sato K, Katayama-Yoshida H (2002) Phys Status Solidi B 229:673

    Article  ADS  Google Scholar 

  45. Liu C, Yun F, Morkoc H (2005) J Mater Sci: Mater Electron 16:555

    Article  Google Scholar 

  46. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) Appl Phys Lett 69:363

    Article  ADS  Google Scholar 

  47. Toyosaki H, Fukumura T, Yamada Y, Nakajima K, Chikyow T, Hasegawa T, Koinuma H, Kawasaki M (2004) Nat Mater 3:221

    Article  PubMed  ADS  Google Scholar 

  48. Shinde SR, Ogale SB, Higgins JS, Zheng H, Millis AJ, Kulkarni VN, Ramesh R, Greene RL, Venkatesan T (2004) Phys Rev Lett 92:166601

    Article  PubMed  ADS  Google Scholar 

  49. Sato H, Kobayashi Y, Aoki Y, Yamamoto Y (1995) J Phys Condens Matter 7:7053

    Article  ADS  Google Scholar 

  50. Burkov AA, Balents L (2003) Phys Rev Lett 91:057202

    Article  PubMed  ADS  Google Scholar 

  51. Chikoidze E, Dumont Y, Jomard F, Ballutaud D, Galtier P, Ferrand D, Sallet V, Gorochov O (2006) Mater Res Bull 41:1038

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Vicerrectoría de investigaciones de la Universidad de Nariño (Contract 113, 19.05.09) and Universidad Nacional de Colombia, sede Medellín (Contract 20101007305). O. M. acknowledge also the financial support of the German Academic Exchange Service (DAAD) through the program “Wiedereinladung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Doria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mera, J., Córdoba, C., Benavidez, J. et al. Applicability of the polymeric precursor method to the synthesis of nanometric single- and multi-layers of Zn1−x Mn x O (x = 0–0.3). J Mater Sci 45, 5398–5405 (2010). https://doi.org/10.1007/s10853-010-4592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4592-3

Keywords

Navigation