Skip to main content
Log in

Effects of crystallographic orientation on the early stages of oxidation in nickel and chromium

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface orientation plays an important role in the oxidation behavior of single crystals where studies have found the relative oxidation rates for surfaces with different orientations. However, most materials are polycrystalline and contain myriad orientations that contribute to the overall oxidation process. Here, we determine the effects of orientation on the early stages of oxidation behavior as a function of surface orientation for polycrystalline nickel (face-centered cubic) and chromium (body-centered cubic). After high temperature oxidation, the oxide topography is characterized using optical profilometry and the underlying microstructure is characterized with electron backscatter diffraction (EBSD). By correlating results from EBSD and optical profilometry, the oxide height is determined for each crystallographic orientation. In both Ni and Cr, a strong relationship is observed between the oxidation rate and direction of the surface normal; for Ni, (111) surfaces oxidize slowest, while (100) surfaces in Cr have the lowest oxidation rates. Although orientation-dependent oxidation rates are observed at short times, the effect is diminished at longer oxidation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rhodin TN Jr (1950) J Appl Phys 21:971

    Article  CAS  ADS  Google Scholar 

  2. Young FW Jr, Cathcart JV, Gwathmey AT (1956) Acta Metall 4:145

    Article  CAS  Google Scholar 

  3. Cathcart JV, Peterson GF, Sparks CJ (1969) J Electrochem Soc 116:664

    Article  CAS  Google Scholar 

  4. Herchl R, Khoi NN, Homma T, Smeltzer WW (1972) Proc Soil Sci Soc Am 4:35

    CAS  Google Scholar 

  5. Graham MJ, Hussey RJ, Cohen M (1973) J Electrochem Soc 120:1523

    Article  CAS  Google Scholar 

  6. Khoi NN, Smeltzer WW, Embury JD (1975) J Electrochem Soc 122:1495

    Article  CAS  Google Scholar 

  7. Czerwinski F, Szpunar JA (1998) Acta Mater 46:1403

    Article  CAS  Google Scholar 

  8. Czerwinski F, Zhilyaev A, Szpunar JA (1999) Corros Sci 41:1703

    Article  CAS  Google Scholar 

  9. Atkinson A (1985) Rev Mod Phys 57:437

    Article  CAS  ADS  Google Scholar 

  10. Kofstad P (1983) In: Rapp RA (ed) High temperature corrosion: NACE reference book 6. National Association of Corrosion Engineers, Houston, TX, p 123

  11. Lawless KR (1974) Rep Prog Phys 37:231

    Article  CAS  ADS  Google Scholar 

  12. Peraldi R, Monceau D, Pieraggi B (2002) Oxid Met 58:275

    Article  CAS  Google Scholar 

  13. Sarrazin P, Galerie A, Caillet M (1996) Oxid Met 46:299

    Article  CAS  Google Scholar 

  14. Caplan D, Sproule GI (1975) Oxid Met 9:459

    Article  CAS  Google Scholar 

  15. Li H, Czerwinski F, Zhilyaev A, Szpunar JA (1997) Corros Sci 39:1211

    Article  CAS  Google Scholar 

  16. Li H, Czerwinski F, Szpunar JA (2001) Defect Diffus Forum 194–199:1683

    Article  Google Scholar 

  17. Schuh CA, Anderson K, Orme C (2003) Surf Sci 544:183

    Article  CAS  ADS  Google Scholar 

  18. Gray JJ, El Dasher BS, Orme CA (2006) Surf Sci 600:2488

    Article  CAS  ADS  Google Scholar 

  19. Schreiber A, Schultze JW, Lohrengel MM, Karman F, Kalman E (2006) Electrochim Acta 51:2625

    Article  CAS  Google Scholar 

  20. Diamanti MV, Pedeferri MP, Schuh CA (2008) Metall Mater Trans A 39:2143

    Article  Google Scholar 

  21. Essuman E, Meier GH, Zurek J, Hansel M, Singheiser L, Norby T, Quadakkers WJ (2008) J Mater Sci 43:5591. doi:10.1007/s10853-008-2795-7

    Article  CAS  ADS  Google Scholar 

  22. Sharma SK, Strunskus T, Ladebusch H, Zaporojtchenko V, Faupel F (2008) J Mater Sci 43:5495. doi:10.1007/s10853-008-2834-4

    Article  CAS  ADS  Google Scholar 

  23. Thery PY, Poulain M, Dupeux M, Braccini M (2009) J Mater Sci 44:1726. doi:10.1007/s10853-008-3108-x

    Article  CAS  ADS  Google Scholar 

  24. Gleeson B, Mu N, Hayashi S (2009) J Mater Sci 44:1704. doi:10.1007/s10853-009-3251-z

    Article  CAS  ADS  Google Scholar 

  25. Caplan D, Graham MJ, Cohen M (1972) J Electrochem Soc 119:1205

    Article  CAS  Google Scholar 

  26. Czerwinski F, Szpunar JA (1999) Corros Sci 41:729

    Article  CAS  Google Scholar 

  27. Larsen DE Jr (1987) Scr Metall 21:1379

    Article  CAS  Google Scholar 

  28. Monceau D, Pieraggi B (1998) Oxid Met 50:477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by DOE contract number DE-AC07-05ID14517 administered through the Center for Advanced Energy Studies, Idaho Falls, ID. LPB was supported in part by a fellowship from the NASA Idaho Space Grant Consortium. MF acknowledges the support of the United States National Science Foundation under grant number 0642363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Frary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonfrisco, L.P., Frary, M. Effects of crystallographic orientation on the early stages of oxidation in nickel and chromium. J Mater Sci 45, 1663–1671 (2010). https://doi.org/10.1007/s10853-009-4144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4144-x

Keywords

Navigation