Skip to main content
Log in

XPS study of the initial oxidation of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface oxidation behaviour of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 was investigated in situ by using X-ray photoelectron spectroscopy (XPS). The initial stages of oxidation at room temperature were studied by exposing the clean alloy specimen surface to varying doses of pure oxygen (up to 1,000 L) in an UHV chamber. Progressive oxidation of Zr, Be and Ti was observed with increasing doses, the major species in the oxide layer being Zr(IV) and Be(II) possibly existing as ZrO2, BeO, while Cu and Ni remained in their elemental forms. High temperature in situ oxidation in the temperature range 423–653 K for a fixed oxygen dose of 300 L was also investigated. Oxidation of Be was observed at all temperatures, while a sharp decrease in the oxidation of Zr and Ti was observed for temperatures at 573 K and above. The results show a preferential oxidation of Be and Zr at room temperature, while at higher temperatures oxidation is controlled by the reduction of oxides of Zr and Ti and the diffusion of oxygen into the alloy bulk. The role of the dissolved carbon impurity in the reduction of the oxides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32:1505

    Google Scholar 

  2. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342. doi:https://doi.org/10.1063/1.110520

    Article  Google Scholar 

  3. Hashimoto K (1983) In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, p 471

    Chapter  Google Scholar 

  4. Baiker A, Schlögl R, Armbruster E, Güntherodt H-J (1987) J Catal 107:221. doi:https://doi.org/10.1016/0021-9517(87)90287-9

    Article  CAS  Google Scholar 

  5. Yamashita H, Yoshikawa M, Funabiki T, Yoshida S (1987) J Chem Soc Faraday Trans 83:2883. doi:https://doi.org/10.1039/f19878302883

    Article  CAS  Google Scholar 

  6. Johnson WL (1994) Mater Sci Technol 9:94

    Article  Google Scholar 

  7. Sen P, Sarma DD, Budhani RC, Chopra KL, Rao CNR (1984) J Phys F14:565

    Article  Google Scholar 

  8. Wang XK, Shen NF, Yang ZS, Gu HC (1995) J Mater Sci Lett 14:1742

    Article  Google Scholar 

  9. Asami K, Kimura HM, Hashimoto K, Masumoto T (1995) Mater Trans JIM 36:988

    Article  CAS  Google Scholar 

  10. WALZ B, Oelhafen P, Güntherodt H-J, Baiker A (1989) Appl Surf Sci 37:337

    Article  CAS  Google Scholar 

  11. Song Z, Bao X, Wild U, Muhler M, Ertl G (1999) Appl Surf Sci 134:31

    Article  Google Scholar 

  12. Schneider S, Sun X, Nicolet M-A, Johnson WL (1995) In: Otooni MA (ed) Science and technology of rapid solidification and processsing. Kluwer Academic Publishers, The Netherlands, p 317

  13. Sun X, Schneider S, Geyer U, Johnson WL, Nicolet M-A (1996) J Mater Res 11:2738

    Article  CAS  Google Scholar 

  14. Kiene M, Strunskus T, Hasse G, Faupel F (1999) Mater Res Soc Symp Proc 554:167

    Article  CAS  Google Scholar 

  15. Triwikantoro, Toma D, Meuris M, Koester U (1999) J Non-Cryst Solids 250–252:719

    Article  Google Scholar 

  16. Köster U, Triwikantoro (2001) Mater Sci Forum 360–362:29

    Article  Google Scholar 

  17. Dhawan A, Raetzke K, Faupel F, Sharma SK (2001) Bull Mater Sci 24:101

    Article  Google Scholar 

  18. Dhawan A, Raetzke K, Faupel F, Sharma SK (2003) Phys Status Solidi 199:431

    Article  CAS  Google Scholar 

  19. Sharma SK, Strunskus T, Ladebusch H, Faupel F (2001) Mater Sci Eng A 304–306:747

    Article  Google Scholar 

  20. Tam CY, Shek CH (2005) J Mater Res 20:1396

    Article  CAS  Google Scholar 

  21. Kai W, Hsieh HH, Nieh TG, Kawamura Y (2002) Intermetallics 10:1265

    Article  CAS  Google Scholar 

  22. Wong CH, Shek CH (2004) Intermetallics 12:1257

    Article  CAS  Google Scholar 

  23. Dhawan A, Zaporojtchenko V, Faupel F, Sharma SK (2007) J Mater Sci 42:9037. doi:https://doi.org/10.1007/s10853-007-1819-z

    Article  CAS  Google Scholar 

  24. Kai W, Hseih HH, Chen YR, Wang YF, Dang PC (2007) Intermetallics 15:1459

    Article  CAS  Google Scholar 

  25. Hsieh HH, Kai W, Huang RT, Pan MX, Nieh TG (2004) Intermetallics 12:1089

    Article  CAS  Google Scholar 

  26. Liu L, Chan KC (2005) Appl Phys A Mater Sci Process 80:1737

    Article  CAS  Google Scholar 

  27. Ehmler H, Heesemann A, Rätzke K, Faupel F, Geyer U (1998) Phys Rev Lett 80:4919

    Article  CAS  Google Scholar 

  28. Busch R, Johnson WL (1998) Mater Sci Forum 269–272:577

    Article  Google Scholar 

  29. Macht M-P, Wei Q, Wanderka N, Sieber I, Deyneka N (2000) Mater Sci Forum 343–346:173

    Article  Google Scholar 

  30. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Physical Electronics Division, Eden Prairie

    Google Scholar 

  31. Nishino Y, Krauss AR, Lin Y, Gruen DM (1996) J Nucl Mater 228:346

    Article  CAS  Google Scholar 

  32. Kaufmann R, Klewe-Nebenius H, Moers H, Pfennig G, Jennet H, Ache HJ (1988) Surf Interface Anal 11:502

    Article  CAS  Google Scholar 

  33. Zaporozchenko V, Stepanova MG (1995) Prog Surf Sci 49:155

    Article  CAS  Google Scholar 

  34. Satoh H, Nakane H, Adachi H (1996) Appl Surf Sci 94–95:247

    Article  Google Scholar 

  35. Lee PA, Stork KE, Maschoff BL, Nebesny KW, Armstrong NR (1991) Surf Interface Anal 17:48

    Article  CAS  Google Scholar 

  36. Vaquila I, Passeggi MCG Jr, Ferron J (1996) Appl Surf Sci 93:247

    Article  CAS  Google Scholar 

  37. Seah MP, Dench WA (1979) Surf Interface Anal 1:2

    Article  CAS  Google Scholar 

  38. Ertl G, Küppers J (1985) Low energy electron and surface chemistry. VCH, Weinheim, p 78

  39. Lide DR (ed) (1991–1992) CRC handbook of chemistry and physics, 72nd edn. CRC Press, Boca Raton

  40. Wang WH, Bian PW, Zhang Y, Pan MX, Zhao DQ (2002) Intermetallics 10:1249

    Article  CAS  Google Scholar 

Download references

Acknowledgement

S.K.S. would like to gratefully acknowledge the invitation and the financial support received from the Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel for working as a Visiting Scientist during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Strunskus, T., Ladebusch, H. et al. XPS study of the initial oxidation of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 . J Mater Sci 43, 5495–5503 (2008). https://doi.org/10.1007/s10853-008-2834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2834-4

Keywords

Navigation