Skip to main content
Log in

Control of morphology in inert-gas condensation of metal oxide nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report preparation conditions to obtain different morphologies of as-deposited refractory metal-oxide nanoparticles using inert-gas condensation with CO2 laser heating. The micrometer-scale morphology of the nanoparticles depends on the specific metal oxide, the buffer gas composition and pressure, and the target-to-substrate distance. These parameters control the extent to which a plume of nonagglomerated nanoparticles can reach a deposition substrate. Buffer gas pressure has the largest influence for a given material, with lower pressures producing a dense columnar morphology and higher pressures resulting in an open networked morphology. An estimate based on the geometry of the gas-phase plume and experimental results for Y2O3 nanoparticles produced in 4 Torr N2 gives a critical concentration of tens of nanoparticles per μm3 for the transition of agglomerates versus isolated nanoparticles reaching a deposition substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fissan H, Kennedy MK, Krinke TJ, Kruis FE (2003) J Nanopart Res 5:299

    Article  CAS  Google Scholar 

  2. Seifert G (2004) Nat Mater 3:77

    Article  CAS  Google Scholar 

  3. Bowen P, Carry C (2002) Powder Technol 128:248

    Article  CAS  Google Scholar 

  4. Groza JR (1999) Nanostruct Mater 12:987

    Article  Google Scholar 

  5. Lee TG, Hyun JE (2006) Chemosphere 62:26

    Article  CAS  Google Scholar 

  6. Kuhlmann SA, Reimann J, Will S (2006) J Aerosol Sci 37:1696

    Article  CAS  Google Scholar 

  7. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Phys Rev E 76:061203

    Article  CAS  Google Scholar 

  8. Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM (2008) Nano Lett 8:446

    Article  CAS  Google Scholar 

  9. Sirbuly DJ, Law M, Pauzauskie P, Yan HQ, Maslov AV, Knutsen K, Ning CZ, Saykally RJ, Yang PD (2005) Proc Natl Acad Sci USA 102:7800

    Article  CAS  Google Scholar 

  10. Shen YZ, Friend CS, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad PN (2000) J Phys Chem B 104:7577

    Article  CAS  Google Scholar 

  11. Bell AT (2003) Science 299:1688

    Article  CAS  Google Scholar 

  12. Liu Q, Cui ZM, Ma Z, Bian SW, Song WG, Wan LJ (2007) Nanotechnology 18:385605

    Article  CAS  Google Scholar 

  13. Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li WF, Carnes C, Klabunde KJ (2001) Chemistry 7:2505

    Article  CAS  Google Scholar 

  14. Xagas AP, Androulaki E, Hiskia A, Falaras P (1999) Thin Solid Films 357:173

    Article  CAS  Google Scholar 

  15. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31

    Article  CAS  Google Scholar 

  16. Kruis FE, Fissan H, Peled A (1998) J Aerosol Sci 29:511

    Article  CAS  Google Scholar 

  17. Gratzel M (2001) Nature 414:338

    Article  CAS  Google Scholar 

  18. Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle ME, Miller JR, Newton MD, Rolison DR, Sankey O, Schanze KS, Yardley J, Zhu XY (2003) J Phys Chem B 107:6668

    Article  CAS  Google Scholar 

  19. Ostraat ML, Blauwe JWD, Green ML, Bell LD, Atwater HA, Flagan RC (2001) J Electrochem Soc 148:G265

    Article  CAS  Google Scholar 

  20. Bjerneld EJ, Svendberg F, Kall M (2003) Nano Lett 3:593

    Article  CAS  Google Scholar 

  21. Maynard AD, Kuempel ED (2005) J Nanopart Res 7:587

    Article  CAS  Google Scholar 

  22. Maximova N, Dahl O (2006) Curr Opin Colloid Interf Sci 11:246

    Article  CAS  Google Scholar 

  23. Kang M, Kim H, Han BW, Suh J, Park J, Choi M (2004) Microelectron Eng 71:229

    Article  CAS  Google Scholar 

  24. Krinke TJ, Deppert K, Magnusson MH, Fissan H (2002) Part Part Syst Charact 19:321

    Article  CAS  Google Scholar 

  25. Shenhar R, Rotello VM (2002) Acc Chem Res 36:549

    Article  CAS  Google Scholar 

  26. Cimalla V, Stubenrauch M, Weise F, Fischer M, Tonisch K, Hoffmann M, Ambacher O (2007) Appl Phys Lett 90:101504

    Article  CAS  Google Scholar 

  27. Klabunde KJ (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley-Interscience, New York, p 1

    Chapter  Google Scholar 

  28. Swihart MT (2003) Curr Opin Colloid Interf Sci 8:127

    Article  CAS  Google Scholar 

  29. Kaiser N (2002) Appl Optics 41:3053

    Article  CAS  Google Scholar 

  30. Hahn H (1997) Nanostruct Mater 9:3

    Article  CAS  Google Scholar 

  31. Kennedy MK, Kruis FE, Fissan H, Mehta BR, Stappert S, Dumpich G (2003) J Appl Phys 93:551

    Article  CAS  Google Scholar 

  32. Kato M (1976) Jpn J Appl Phys 15:757

    Article  CAS  Google Scholar 

  33. Masanori T, Sawai S, Sengoku M, Kato M, Masumoto Y (2000) J Appl Phys 87:8535

    Article  Google Scholar 

  34. El-Shall MS, Abdelsayed V, Pithawalla YN, Alsharach E, Deevi SC (2003) J Phys Chem B 107:2282

    Article  CAS  Google Scholar 

  35. Ohno T (2002) J Nanopart Res 4:255

    Article  CAS  Google Scholar 

  36. Bihari B, Eilers H, Tissue BM (1997) J Lumin 75:1

    Article  CAS  Google Scholar 

  37. Krauss W, Birringer R (1997) Nanostruct Mater 9:109

    Article  CAS  Google Scholar 

  38. Pithawalla YB, Deevi SC, El-Shall MS (2002) Mater Sci Eng A A329–A331:92

    Article  Google Scholar 

  39. Jang HD, Friedlander SK (1998) Aerosol Sci Technol 29:81

    Article  CAS  Google Scholar 

  40. Kim SY, Yu JH, Lee JS (1999) Nanostruct Mater 12:471

    Article  Google Scholar 

  41. Han J, Chang H, Lee J, Chang H (2003) Aerosol Sci Technol 37:550

    Article  CAS  Google Scholar 

  42. Sánchez-López JC, Justo A, Fernández A (1999) Langmuir 15:7822

    Article  CAS  Google Scholar 

  43. Meakin P (1983) Phys Rev A 27:2616

    Article  Google Scholar 

  44. Meakin P (1984) Phys Rev B Condens Matter 30:4207

    Article  Google Scholar 

  45. Tassopoulos M, O’Brien JA, Rosner DE (1989) AIChE J 35:967

    Article  CAS  Google Scholar 

  46. Krinke TJ, Deppert K, Magnusson MH, Schmidt F, Fissan H (2002) J Aerosol Sci 33:1341

    Article  CAS  Google Scholar 

  47. Kulkarni P, Biswas P (2004) Aerosol Sci Technol 38:541

    Article  CAS  Google Scholar 

  48. Kulkarni K, Biswas P (2003) J Nanopart Res 5:259

    Article  CAS  Google Scholar 

  49. Gordon WO, Tissue BM, Morris JR (2007) J Phys Chem C 111:3233

    Article  CAS  Google Scholar 

  50. Eilers H, Tissue BM (1995) Mater Lett 24:261

    Article  CAS  Google Scholar 

  51. Tissue BM, Yuan HB (2003) J Solid State Chem 171:12

    Article  CAS  Google Scholar 

  52. Levoska J, Tyunina M, Leppävuori S (1999) NanoStruct Mater 12:101

    Article  Google Scholar 

  53. Pereira A, Cultrera L, Dima A, Susu M, Perrone A, Du HL, Volkov AO, Cutting R, Datta PK (2006) Thin Solid Films 497:142

    Article  CAS  Google Scholar 

  54. Lao JY, Huang JY, Wang DZ, Ren ZF (2003) Nano Lett 3:235

    Article  CAS  Google Scholar 

  55. Hawkeye MM, Brett MJ (2007) J Vac Sci Technol A 25:1317

    Article  CAS  Google Scholar 

  56. Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics. Oxford University Press, New York

    Google Scholar 

  57. Lam HM, Hong MH, Yuan S, Chong TC (2004) Appl Phys A 79:2099

    Article  CAS  Google Scholar 

  58. Pászti Z, Pet G, Horváth ZE, Karacs A (2000) Appl Surf Sci 168:114

    Article  Google Scholar 

  59. Strobel R, Pratsinis SE (2007) J Mater Chem 17:4743

    Article  CAS  Google Scholar 

  60. Dosev D, Guo B, Kennedy IM (2006) J Aerosol Sci 37:402

    Article  CAS  Google Scholar 

  61. Katagiri S, Ishizawa N, Marumo F (1993) Powder Diffract 8:60

    Article  CAS  Google Scholar 

  62. Vogt GJ (1988) Proc Electrochem Soc 88:572

    Google Scholar 

  63. Kaito C (1981) J Cryst Growth 55:273

    Article  CAS  Google Scholar 

  64. Alayan R, Arnaud L, Broyer M, Cottancin E, Lerme J, Vialle JL, Pellarin M (2006) Phys Rev B 73:125444

    Article  CAS  Google Scholar 

  65. Happy, Mohanty SR, Lee P, Tan TL, Springham SV, Patran A, Ramanujan RV, Rawat RS (2006) Appl Surf Sci 252:2806

    Article  CAS  Google Scholar 

  66. Geohegan DB, Puretzky AS, Duscher G, Pennycook SJ (1998) Appl Phys Lett 72:2987

    Article  CAS  Google Scholar 

  67. Nakata Y, Muramoto J, Okada T, Maeda M (2002) J Appl Phys 91:1640

    Article  CAS  Google Scholar 

  68. Sánchez-López JC, Fernández A (2000) Acta Mater 48:3761

    Article  Google Scholar 

  69. Yatsuya S, Yanagida A, Yamauchi K, Mihama K (1984) J Cryst Growth 70:536

    Article  CAS  Google Scholar 

  70. Kaito C, Fujita K, Shiojiri M (1976) J Appl Phys 47:5161

    Article  CAS  Google Scholar 

  71. Abdelsayed V, El-Shall MS (2007) J Chem Phys 126:024706

    Article  CAS  Google Scholar 

  72. Furusawa H, Sakka T, Ogata YH (2004) J Appl Phys 96:975

    Article  CAS  Google Scholar 

  73. Novopashin SA, Muriel A (1998) JETP Lett 68:582

    Article  Google Scholar 

  74. Pfau P, Sattler K, Muhlbach J, Pflaum R, Recknagel E (1982) J Phys F Metal Phys 12:2131

    Article  CAS  Google Scholar 

  75. Novopashin S, Muriel A (2002) J Exp Theoret Phys 95:262

    Article  CAS  Google Scholar 

  76. Nanda KK, Kruis FE, Fissan H, Acet M (2002) J Appl Phys 91:2315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Barbara Reisner at James Madison University for the powder XRD data, Kenneth Livi at Johns Hopkins University for the HRTEM data, and Steve McCartney for assistance with microscopy. Funding was provided by the U.S. Army Research Office under Grant W911NF-04-1-0195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, W.O., Morris, J.R. & Tissue, B.M. Control of morphology in inert-gas condensation of metal oxide nanoparticles. J Mater Sci 44, 4286–4295 (2009). https://doi.org/10.1007/s10853-009-3636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3636-z

Keywords

Navigation