Skip to main content
Log in

Influence of copper on the microstructure of sol–gel titanium oxide nanotubes array

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of copper addition in the microstructure of sol–gel titanium oxide (TiO2) supported on anodic aluminum oxide (AAO) membranes is reported. Two deposition methods based on immersion and flow techniques were used for the coating of the porous AAO membrane. Copper-free membranes were studied as a function of different ratios of H+/Ti, H2O/Ti, selecting the most appropriate for the sensitization with copper. For copper-doped TiO2 arrays, the presence of copper causes the reduction of grain size and enhances titania deposition inside the AAO pores, although no clear tendency with copper content was found. The formation of copper-doped titania nanotubes was validated after dissolving the AAO membranes, finding a deposition-dependent stability in the Cu-doped materials. Titania and Cu-doped titania nanotubes analyzed as colloidal solutions show band gaps substantially shifted to the red in comparison to the direct band gap of near-spherical colloidal materials. These arrays are important for photocatalysis and for the development of third generation photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) Prog Mater Sci 52:699

    Article  CAS  Google Scholar 

  2. Shankar KS, Raychaudhuri AK (2005) Mater Sci Eng C 25:738

    Article  Google Scholar 

  3. Li XH, Liu WM, Li HL (2005) Appl Phys A 80:317

    Article  ADS  CAS  Google Scholar 

  4. Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L (2008) J Mater Sci 43:1880. doi:10.1007/s10853-007-2418-8

    Article  ADS  CAS  Google Scholar 

  5. Chen P-L, Kuo CT, Pan FM (2004) Appl Phys Lett 84:3889

    ADS  Google Scholar 

  6. Tian T, Xiao X-F, Liu R-F, She H-D, Hu X-F (2007) J Mater Sci 42:5539. doi:10.1007/s10853-006-1104-6

    Article  ADS  CAS  Google Scholar 

  7. Turkevych I, Pihosh Y, Goto M, Kasahara A, Tosa M, Takehana SK, Takamasu T, Kido G, Koguchi N (2008) Thin Solid Films 516:2387

    Article  ADS  CAS  Google Scholar 

  8. Quan X, Yang SG, Ruan XL, Zhao HM (2005) Environ Sci Technol 39:3770

    Article  PubMed  CAS  Google Scholar 

  9. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505

    Article  CAS  Google Scholar 

  10. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179

    Article  PubMed  CAS  Google Scholar 

  11. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cell 90:2011

    Article  CAS  Google Scholar 

  12. Slamet Nasution HW, Purnama E, Kosela S, Gunlazuardi J (2005) Catal Commun 6:313

    Article  Google Scholar 

  13. Nomura N, Tagawa T, Goto S (1998) React Kinet Catal Lett 63:9

    Article  CAS  Google Scholar 

  14. Morán-Pineda M, Castillo S, Asomoza M, Gómez R (2002) React Kinet Catal Lett 76:75

    Article  Google Scholar 

  15. Lim TH, Jeong S-M, Kim S-D, Gyenis J (2000) React Kinet Catal Lett 71:223

    Article  CAS  Google Scholar 

  16. Huang Ch, Liu X, Liu Y, Wang Y (2006) Chem Phys Lett 432:468

    Article  ADS  CAS  Google Scholar 

  17. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Appl Surf Sci 254:2569

    Article  ADS  CAS  Google Scholar 

  18. Araña J, Peña Alonso A, Doña Rodríguez JM, Herrera Melián JA, González Díaz O, Pérez Peña J (2008) Appl Catal B 78:355

    Article  Google Scholar 

  19. Zhu B, Zhang X, Wang S, Zhang S, Wu S, Huang W (2007) Microporous Mesoporous Mater 102:333

    Article  CAS  Google Scholar 

  20. Kim K-H, Ihm S-K (2007) J Hazard Mater 146:610

    Article  PubMed  CAS  Google Scholar 

  21. Colón G, Maicu M, Hidalgo MC, Navío JA (2006) Appl Catal B 67:41

    Article  Google Scholar 

  22. Xiaoyuan J, Guanghui D, Liping L, Yingxu C, Xiaoming Z (2004) J Mol Catal A 218:187

    Article  Google Scholar 

  23. Tseng I-H, Wu JCS, Chou H-Y (2004) J Catal 221:432

    Article  CAS  Google Scholar 

  24. Zhu Y-Q, Wen Y, Lai L-F, Zong F-Q, Wang J (2004) J Fuel Chem Technol 32:486

    CAS  Google Scholar 

  25. Qi G-X, Zheng X-M, Fei J-H, Hou Z-Y, Xu B, Dong L, Chen Y (1998) J Chem Soc Farad Trans 94:1905

    Article  Google Scholar 

  26. Wu JCS, Seng I-H, Chang W-Ch (2001) J Nanopart Res 3:113

    Article  CAS  Google Scholar 

  27. Patcas F, Krysmann W (2007) Appl Catal A 316:240

    Article  CAS  Google Scholar 

  28. Yadlovker D, Berger S (2007) Sens Actuat B 126:277

    Article  Google Scholar 

  29. Bokhimi X, Novaro O, Gonzalez RD, López T, Chimal O, Asomoza A, Gómez R (1999) J Solid State Chem 144:349

    Article  ADS  CAS  Google Scholar 

  30. Guinier A (1994) In: Crystals, imperfect crystals, and amorphous bodies. Courier Dover, USA

  31. Anderson MA, Gieselmann MJ, Xu Q (1988) J Membrane Sci 39:243

    Article  CAS  Google Scholar 

  32. Perkowitz S (1993) Optical characterization of semiconductors: Infrared, Raman, and Photoluminescence spectroscopy. Academic Press Limited, London

    Google Scholar 

  33. Lucky RA, Charpentier PA (2008) Adv Mater 20:1755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT-UNAM IN111106-3), Proyecto Universitario de Nanotecnología (PUNTA-UNAM), Consejo Nacional de Ciencia y Tecnología (CONACYT 49100), is gratefully acknowledged, as well as the fellowship (S. López-Ayala) provided by CONACYT-México. We thank R. Morán, P. Altúzar, and M.L. Román for technical assistance and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Rincón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Ayala, S., Rincón, M.E. & Pfeiffer, H. Influence of copper on the microstructure of sol–gel titanium oxide nanotubes array. J Mater Sci 44, 4162–4168 (2009). https://doi.org/10.1007/s10853-009-3617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3617-2

Keywords

Navigation