Skip to main content
Log in

TEM characterization of iron-oxide-coated ceramic membranes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe2O3) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe2O3 coating on the sintered, coated membranes, where the Fe2O3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe2O3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe2O3, while the AZTC membrane was a mixture of the anatase and rutile phase of TiO2 as well as ZrO2 and corundum, Al2O3. The average pore size of the underlying AZTC membrane increased after the Fe2O3-coated membrane was sintered. The nanoporosity in the sintered Fe2O3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Keane MA (2003) J Mater Sci 38:4661. doi:10.1023/A:1027406515132

    Article  CAS  Google Scholar 

  2. Trudeau ML, Ying JY (1996) Nanostruct Mater 7:245

    Article  CAS  Google Scholar 

  3. Onda A, Suzuki Y, Takemasa S, Kajiyoshi K, Yanagisawa K (2008) J Mater Sci 43:4230. doi:10.1007/s10853-008-2612-3

    Article  ADS  CAS  Google Scholar 

  4. Neri G, Rizzo G, Galvagno S, Loiacono G, Donato A, Musolino MG, Pietropaolo R, Rombi E (2004) Appl Catal A 274:243

    Article  CAS  Google Scholar 

  5. US EPA (2001) In Low-pressure membrane filtration for pathogen removal: application, implementation and regulatory issues. Office of Water 815-C-01-001

  6. Puhlfürß P, Voigt A, Weber R, Morbé M (2000) J Membr Sci 174:123

    Article  Google Scholar 

  7. Hashino M, Mori Y, Fujii Y, Motoyama N, Kadokawa N, Hoshikawa H, Nishijima W, Okada M (2000) Water Sci Technol 41:17

    CAS  Google Scholar 

  8. Shanbhag PV, Guha AK, Sirkar KK (1998) Ind Eng Chem Res 37:4388

    Article  CAS  Google Scholar 

  9. Castro K, Zander AK (1995) J Am Water Works Assoc 87:50

    CAS  Google Scholar 

  10. Shen ZS, Semmens MJ, Collins AG (1990) Environ Technol 11:597

    Article  CAS  Google Scholar 

  11. Karnik BS, Davies SHR, Chen KC, Jaglowski DR, Baumann MJ, Masten SJ (2005) Water Res 39:728

    Article  PubMed  CAS  Google Scholar 

  12. Schlichter B, Mavrov V, Chmiel H (2004) Desalination 168:307

    Article  CAS  Google Scholar 

  13. Allemane H, Deloune B, Paillard H, Legube B (1993) Ozone Sci Eng 15:419

    CAS  Google Scholar 

  14. Kim JO, Somiya I (2001) Environ Technol 22:7

    Article  PubMed  CAS  Google Scholar 

  15. Kim JO, Somiya I, Fujii S (1991) In: Proceedings of the 14th Ozone World Congress. Dearborn, MI, p 131

  16. Sartor M, Schlichter B, Gatjal H, Mavrov V (2008) Desalination 222:528

    Article  CAS  Google Scholar 

  17. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Water Res 39:2839

    Article  PubMed  CAS  Google Scholar 

  18. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Environ Sci Technol 39:7656

    Article  PubMed  CAS  Google Scholar 

  19. List of drinking water contaminants and MCLS (2009) EPA website. http://www.epa.gov/safewater/mcl.html#mcls. Accessed 27 May 2009

  20. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2007) Environ Eng Sci 24:852

    Article  CAS  Google Scholar 

  21. Karnik BS, Baumann MJ, Masten SJ, Davies SH (2006) J Mater Sci 41:6861. doi:10.1007/s10853-006-0943-5

    Article  ADS  CAS  Google Scholar 

  22. McKenzie KJ, Marken F, Hyde M, Compton RG (2002) New J Chem 26:625

    Article  CAS  Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  ADS  CAS  Google Scholar 

  24. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  25. Williams DB, Carter CB (1996) In: Transmission electron microscopy. Springer, New York, p 187

  26. Barsoum MW (2003) In: Cantor B, Goringe MJ (eds) Fundamentals of ceramics. Institute of Physics Publishing, Bristol, p 307

Download references

Acknowledgements

The authors would like to acknowledge the US Environmental Protection Agency (US EPA) Science to Achieve Results (STAR) Program (Grant No. RD830090801) and the National Science Foundation Nanoscale Interdisciplinary Research Teams (NSF-NIRT) Program (Grant No. BES0506828) for financial support of this work. Our thanks also go to Ms. Alicia Pastor, from the Center for Advanced Microscopy and Mr. Robert Pcionek for there assistance during TEM sample analysis. Mr. Rui Huang is also acknowledged for XRD analysis of the samples. Thanks are due to Yang Chen for performing the BET measurements. We would also like to thank Mr. David Jackson for his assistance with the membrane coating process. Finally, we gratefully acknowledge the helpful suggestions and comments from Prof. G.M. Janowski of the University of Alabama at Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Corneal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnik, B.S., Baumann, M.J., Corneal, L.M. et al. TEM characterization of iron-oxide-coated ceramic membranes. J Mater Sci 44, 4148–4154 (2009). https://doi.org/10.1007/s10853-009-3608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3608-3

Keywords

Navigation