Skip to main content
Log in

Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of friction stir welds was produced between heat treated Al–Mg–Si and strain hardened Mg–Al–Zn alloy sheets. Weld evaluation by transverse tensile testing showed a wide range of strengths and all the failures occurred along the weld interface. The formation of intermetallic compounds in the weld joints was investigated by X-ray diffraction, scanning electron microscopy imaging, and elemental analysis techniques. Micro and nanoindentation characterization methods were used to evaluate the mechanical properties at the interface, including the fracture toughness. The fracture toughness measurements by a Vickers indenter introduced Palmqvist type cracks at all four corners of the indents and cube corner indenter resulted in the intermetallic chipping. The fracture toughness (K IC) calculation by both the micro and nanoindentation methods showed very low values, which is the primary reason for the brittle failure of the dissimilar weld joints and concomitant low tensile strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reynolds AP (2000) Sci Technol Weld Joining 5(2):120

    Article  MathSciNet  Google Scholar 

  2. Long T, Tang W, Reynolds AP (2007) Sci Technol Weld Joining 12(4):311

    Article  CAS  Google Scholar 

  3. Zhang Z (2008) J Mater Sci 43:5867. doi:10.1007/s10853-008-2865-x

    Article  ADS  CAS  Google Scholar 

  4. Khandkar MZH, Khan AJ, Reynolds AP (2003) Sci Technol Weld Joining 8(3):165

    Article  Google Scholar 

  5. Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi:10.1007/s10853-007-2129-1

    Article  ADS  CAS  Google Scholar 

  6. Afrin N, Chen DL, Cao X, Jahazi M (2008) Mater Sci Eng A 472:179

    Article  Google Scholar 

  7. Commin L, Dumont M, Masse JE, Barrallier L (2009) Acta Mater 57:326

    Article  CAS  Google Scholar 

  8. Esparza JA, Davis WC, Murr LE (2003) J Mater Sci 38:941. doi:10.1023/A:1022321107957

    Article  CAS  Google Scholar 

  9. Park SHC, Sato YS, Kokawa H (2003) J Mater Sci 38:4379. doi:10.1023/A:1026351619636

    Article  CAS  Google Scholar 

  10. Lee CY, Lee WB, Kim JW, Cho DH, Yeon YM, Jung SB (2008) J Mater Sci 43:3296. doi:10.1007/s10853-008-2525-1

    Article  ADS  CAS  Google Scholar 

  11. Somasekharan AC, Murr LE (2006) J Mater Sci 41:5365. doi:10.1007/s10853-006-0342-y

    Article  ADS  CAS  Google Scholar 

  12. Chen YC, Nakata K (2008) Scripta Mater 58:433

    Article  CAS  Google Scholar 

  13. McLean AA, Powell GLF, Brown IH, Linton VM (2003) Sci Technol Weld Joining 8(6):462

    Article  Google Scholar 

  14. Borrisutthekul R, Yachi T, Miyashita Y, Mutoh Y (2007) Mater Sci Eng A 467:108

    Article  Google Scholar 

  15. Liming L, Shengxi W, Limin Z (2008) Mater Sci Eng A 476:206

    Article  Google Scholar 

  16. Gerlich A, Yamamoto M, North TH (2008) J Mater Sci 43:2. doi:10.1007/s10853-007-1791-7

    Article  ADS  CAS  Google Scholar 

  17. Gerlich A, Su P, North TH (2005) Sci Technol Weld Joining 10(6):647

    Article  CAS  Google Scholar 

  18. Somasekharan AC, Murr LE (2004) Mater Charact 52:49

    Article  CAS  Google Scholar 

  19. Sato YS, Park SHC, Michiuchi M, Kokawa M (2004) Scripta Mater 50:1233

    Article  CAS  Google Scholar 

  20. Morrel J, Gant AJ (2001) Int J Refract Met Hard Mater 19:293

    Article  Google Scholar 

  21. Li XD, Bhushan B (1998) Thin solid Films 315:214

    Article  ADS  CAS  Google Scholar 

  22. Chai H, Lawn BR (2007) Acta Mater 55:2555

    Article  CAS  Google Scholar 

  23. Bailey SJ, Baldini NC (2007) Annual Book of ASTM Standards. ASTM International, PA, USA

    Google Scholar 

  24. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  ADS  CAS  Google Scholar 

  25. Singh D, Suryanarayana C, Mertus L, Chen RH (2003) Intermetallics 11:373

    Article  CAS  Google Scholar 

  26. Gault C, Dauger A, Boch P (1977) Phys Status Solidi A 43:625

    Article  CAS  Google Scholar 

  27. Li XD, Bhushan B (2001) Thin Solid Films 398:313

    Article  ADS  Google Scholar 

  28. Li XD, Bhushan B (1999) Thin Solid Films 355:330

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Center for Friction Stir Processing which is a National Science Foundation I/UCRC supported by Grant No. EEC-0437341. The authors thank Dr. Wei Tang and Daniel Wilhelm, Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA for their help in preparing the weld joints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswaran, P., Xu, ZH., Li, X. et al. Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods. J Mater Sci 44, 4140–4147 (2009). https://doi.org/10.1007/s10853-009-3607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3607-4

Keywords

Navigation