Skip to main content
Log in

Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films

  • Mesostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of mesoporous silica and silica–titania-mixed metal oxide films prepared via sol–gel processing as substrates for cell growth was investigated. A deliberate tailoring of the chemical composition of the porous substrates with different Si:Ti ratios was achieved by using a single-source precursor based on a titanium-coordinated alkoxysilane, resulting in mesoporous silica–titania films with hydrophilic surfaces. The different coatings were investigated with respect to their applicability in the cultivation of human cells such as human fibroblasts and multipotent mesenchymal stromal cells. It was found that they promoted cell adhesion and proliferation of human fibroblasts up to a period of 14 days. After 2 weeks only single apoptotic cells could be detected on silica–titania mixed oxide films in contrast to a somewhat higher amount on silica coatings. Furthermore, none of the films inhibited osteogenic differentiation of multipotent mesenchymal stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME et al (1992) Nature 359:710

    Article  CAS  Google Scholar 

  2. Carturan G, Campostrini et al (1989) J Mol Catal 57:L13

    Article  CAS  Google Scholar 

  3. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013

    Article  CAS  Google Scholar 

  4. Rooke JC, Léonard A et al (2008) J Mater Chem 18:2833

    Article  CAS  Google Scholar 

  5. Yang XY, Li ZQ et al (2006) Adv Mater 18:410

    Article  CAS  Google Scholar 

  6. Vallet-Regi M (2006) Chem Europ J 12:5934

    Article  CAS  Google Scholar 

  7. Coffer JL, Whitehead MA et al (2005) Phys Stat Sol A Appl Mater Sci 202:1451

    Article  CAS  Google Scholar 

  8. Yan X, Yu C et al (2004) Angew Chem Int Ed 43:5980

    Article  CAS  Google Scholar 

  9. Balas F, Manzano M et al (2008) Acta Biomater 4:514

    Article  CAS  Google Scholar 

  10. Baca HK, Carnes E et al (2006) Science 313:337

    Article  CAS  Google Scholar 

  11. Puleo DA, Nanci A (1999) Biomaterials 20:2311

    Article  CAS  Google Scholar 

  12. Vallet-Regi M (2006) Dalton Trans 44:5211

    Article  Google Scholar 

  13. Viitala R, Jokinen M et al (2002) Biomaterials 23:3073

    Article  CAS  Google Scholar 

  14. Ääritalo V, Areva S et al (2007) J Mater Sci Mater Med 18:1863

    Article  Google Scholar 

  15. Areva S, Ääritalo V et al (2007) J Mater Sci Mater Med 18:1633

    Article  CAS  Google Scholar 

  16. Brinker CJ, Lu Y et al (1999) Adv Mater 11:579

    Article  CAS  Google Scholar 

  17. Doshi D, Hüsing N et al (2000) Science 290:107

    Article  CAS  Google Scholar 

  18. Hozumi A, Kimura T (2008) Langmuir 24:11141

    Article  CAS  Google Scholar 

  19. Spatz JP (2004) Nanobiotechnology 53

  20. Puchberger M, Rupp W et al (2004) New J Chem 28:1289

    Article  CAS  Google Scholar 

  21. Torma V, Peterlik H et al (2005) Chem Mater 17:3146

    Article  CAS  Google Scholar 

  22. Brinker CJ, Raman NK et al (1995) J Sol-Gel Sci Technol 4:117

    Article  CAS  Google Scholar 

  23. Fiedler J, Brill C et al (2006) Biochem Biophys Res Commun 345:1177

    Article  CAS  Google Scholar 

  24. Lu Y, Ganguli R et al (1997) Nature 389:364

    Article  CAS  Google Scholar 

  25. Garcia C, Zhang Y et al (2003) Angew Chem Int Ed 42:1526

    Article  CAS  Google Scholar 

  26. Matsura V, Guari Y et al (2004) J Mater Chem 14:3026

    Article  CAS  Google Scholar 

  27. Tura C, Coombs N et al (2005) Chem Mater 17:573

    Article  CAS  Google Scholar 

  28. Supplit R, Hüsing N et al (2006) J Mater Chem 16:4443

    Article  CAS  Google Scholar 

  29. Hüsing N, Launay B (2003) Appl Catal 254:297

    Article  Google Scholar 

  30. Supplit R, Hüsing N et al (2007) Europ J Inorg Chem 18:2797

    Google Scholar 

  31. Koehler J, Cai J et al (2007) Mater Res Soc Symp Proc 1007:S04–S12

    Article  Google Scholar 

  32. Andrianainarivelo M, Corriu R et al (1996) J Mater Chem 6:1665

    Article  CAS  Google Scholar 

  33. Kanta A, Sedev R et al (2005) Langmuir 21:2400

    Article  CAS  Google Scholar 

  34. Lebaron RG, Athanasiou KA (2000) Tissue Eng 6:85

    Article  CAS  Google Scholar 

  35. Hench LL (2000) Key Eng Mater 192–195:575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hüsing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böcking, D., Fiedler, J., Brenner, R.E. et al. Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films. J Mater Sci 44, 6786–6794 (2009). https://doi.org/10.1007/s10853-009-3565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3565-x

Keywords

Navigation