Skip to main content
Log in

Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy bimaterials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes some technical limitations encountered in joining ceramics–ceramics or ceramics–metals, and how, to some extent, they have been practically overcome. The effect of the residual stresses on the strength of joints fabricated between alumina–alumina or alumina and the nickel base alloy HAYNES® 214™ using a solid-state bonding technique with Ni interlayer was studied. Finite element analyses (FEA) for the elastic–plastic and elastic–plastic–creep behavior have also been used to better design the joints and to predict their performance. It was found that the residual stresses caused by the thermal expansion mismatch between alumina (Al2O3) and the Ni-based superalloy (HAYNES® 214™) have severely deteriorated the joints compared to Al2O3–Al2O3 joint fabricated with the same solid-state bonding parameters. The high residual stresses zones obtained through the FEA simulation fitted well with the fractographic observations of the Al2O3/Ni/HAYNES® 214™ joints. Also, in order to use the joint material as a structural material, the study about the effect of geometrical parameters has been performed. Optimal geometries have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Foley AG, Andrews DJ (1994) Tech Rev 13:64

    Google Scholar 

  2. Lemus-Ruiz J, Ceja-Cardenas L, Verduzco JA, Osvaldo F (2008) J Mater Sci 43(18):6296. doi:https://doi.org/10.1007/s10853-008-2894-5

    Article  CAS  Google Scholar 

  3. Lourdin P, Juvé D, Tréheux D (1996) J Eur Ceram Soc 16(7):745

    Article  CAS  Google Scholar 

  4. Serier B, Tréheux D (1993) Acta Metall Mater 41(2):369

    Article  CAS  Google Scholar 

  5. Zhang Y, Feng D, He ZY, Chen XC (2006) J Iron Steel Res Int 13(2):1

    Article  Google Scholar 

  6. Das S, Tiwar AN, Kulkarni AR (2004) J Mater Sci 39:3345. doi:https://doi.org/10.1023/B:JMSC.0000026935.18466.4b

    Article  CAS  Google Scholar 

  7. Locatelli MR, Dalgleish BJ, Nakashima K, Tomsia AP, Glaeser AM (1997) Ceram Inter 23:313

    Article  CAS  Google Scholar 

  8. Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 42(23):9524. doi:https://doi.org/10.1007/s10853-007-2093-9

    Article  CAS  Google Scholar 

  9. Kar A, Mandal S, Ghosh RN, Ghosh TK, Ray AK (2007) J Mater Sci 42(14):5556. doi:https://doi.org/10.1007/s10853-006-1092-6

    Article  CAS  Google Scholar 

  10. Zhang JX, Chandel YZ, Seow HP (2002) J Mater Proc Tech 122:220

    Article  CAS  Google Scholar 

  11. Schwartz MM (1990) Ceramic joining. ASM International, Metals Park, OH

    Google Scholar 

  12. Zhang Y, Feng D, He ZY, Chen XC (2006) J Iron Steel Res 13(2):1

    Article  Google Scholar 

  13. Tréheux D, Lourdin P, Mbongo B, Juve D (1994) Scripta Metall Mater 31(8):105511

    Article  Google Scholar 

  14. Wan C, Dupeux M (1993) J Mater Sci 28:5079. doi:https://doi.org/10.1007/BF00361183

    Article  CAS  Google Scholar 

  15. Zhang W, Smith JR, Evans AG (2002) Acta Mater 50:3803

    Article  CAS  Google Scholar 

  16. Florjancic M, Mader W, Rühle M, Turwitt M (1985) J Phys 46C4:129

    Google Scholar 

  17. Morozumi S, Kikuchi S, Nishio T (1981) J Mater Sci 16:2137. doi:https://doi.org/10.1007/BF0054374

    Article  CAS  Google Scholar 

  18. Lu YC, Sass SL, Bai Q, Kohlstedt DL, Gerberich WW (1995) Acta Metall Mater 43:31

    CAS  Google Scholar 

  19. Heikinheimo LSK, de With G (1996) International Institute of Welding, Report IIW Doc IX, 1827 p

  20. Trumble KP, Ruhle M (1991) Acta Metall Mater 39:1915

    Article  CAS  Google Scholar 

  21. Tang S, Zehnder AT (2002) Eng Frac Mech 69:701

    Article  Google Scholar 

  22. Ohuchi FS, French RH, Kasowski RV (1987) J Appl Phys 62(6):31

    Article  Google Scholar 

  23. Beraud C, Esnouf C (1990) Microsc Microanal Microstruct 1:69

    Article  CAS  Google Scholar 

  24. Hattali ML, Valette S, Ropital F, Stremsdoerfer G, Mesrati N, Tréheux D (2009) J Eur Ceram Soc 29:813

    Article  CAS  Google Scholar 

  25. Calow CA, Bayer PB, Porter IT (1971) J Mater Sci 6:150. doi:https://doi.org/10.1007/BF00550346

    Article  CAS  Google Scholar 

  26. Sutton WH, Feingold (1966) The role of grain boundaries and surfaces in ceramics. Plenum Press, New York

    Google Scholar 

  27. Bailey FP, Borbidge WE (1981) Mater Sci Res 14:525

    CAS  Google Scholar 

  28. Calow CA, Porter IT (1971) J Mater Sci 6:156. doi:https://doi.org/10.1007/BF00550347

    Article  CAS  Google Scholar 

  29. Vardiman RG (1972) Mater Res Bull 7:699

    Article  CAS  Google Scholar 

  30. Foley AG, Winters CG (1989) British Ceram Proceed 81(9):2342

    Google Scholar 

  31. Baram M, Kaplan WD (2006) J Mater Sci 41(23):7775. doi:https://doi.org/10.1007/s10853-006-0897-7

    Article  CAS  Google Scholar 

  32. Kara-Slimane A, Mbongo B, Tréheux DJ (1999) Adhes Sci Technol 13:35

    Article  CAS  Google Scholar 

  33. ABAQUS Software (2006) User’s manual, version 6.6. Karlsson and Sorensen Inc, Hibbitt

  34. Luton MJ, Sellars CM (1969) Acta Met 17:1033

    Article  CAS  Google Scholar 

  35. Frost HJ, Ashby MF (1982) Deformation mechanism maps, the plasticity and creep of metals and ceramics, 1 edn. Pergamon, Oxford

    Google Scholar 

  36. Drillet P (1991) Thèse de doctorat. University of Rennes, France

  37. Levi G, Kaplan WD (2006) J Mater Sci 41(3):817. doi:https://doi.org/10.1007/s10853-006-6565-0

    Article  CAS  Google Scholar 

  38. Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Scripta Metall Mater 31(8):1109

    Article  CAS  Google Scholar 

  39. Hattali ML (2009) Caractérisations et modélisations thermomécaniques des assemblages métal/céramique élaborés par thermocompression. Thèse de doctorat, Ecole Centrale de Lyon, France

  40. Touloukian YS (1967) Thermophysical properties of high temperature solid materials. MacMillan, New York

    Google Scholar 

  41. Haynes International, Inc (2008) https://doi.org/www.haynesintl.com. Accessed 3 June 2008

  42. Lourdin P (1992) Les liaisons Ni-Al2O3 à l’état solide. Etat des contraintes thermique, comportement mécanique. Thèse de doctorat, Ecole Centrale de Lyon, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Hattali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattali, M.L., Valette, S., Ropital, F. et al. Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy bimaterials. J Mater Sci 44, 3198–3210 (2009). https://doi.org/10.1007/s10853-009-3426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3426-7

Keywords

Navigation