Skip to main content
Log in

Unified description of martensite microstructure and kinetics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A quantitative metallography method is described to obtain size and number per unit volume of martensite units from linear intercept measurements. The entailed relationship between the number per unit volume of martensite plates and the volume fraction transformed is consistent with the autocatalytic nature of martensite. Application to the athermal and the isothermal martensite reactions allowed development of a unified microstructure-kinetic model. Validation of the model equations was achieved with data pertaining to FeNiC and FeNiMn alloys found in the literature. The apparent activation energy for propagation of isothermal martensite yielded by the transformation curve is compatible with the value obtained from the initial transformation rate. The defect redistribution process austenite/martensite established during the thickening of the plates has a crucial role in autocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao J-C, Notis MR (1995) Mater Sci Eng R 15:135

    Article  Google Scholar 

  2. Kurdjumov GV, Maximova OP (1948) Dokl Akad Nauk SSSR 61:83

    Google Scholar 

  3. Kurdjumov GV, Maximova OP (1950) Dokl Akad Nauk SSSR 73:95

    Google Scholar 

  4. Olson GB, Cohen M (1985) Principles of martensitic transformation, frontiers in materials technologies. Elsevier, Amsterdam, p 43

    Google Scholar 

  5. Ping X, Morris JW Jr (1993) Metall Trans A24:1281

    Google Scholar 

  6. Levitas VI, Idesman AV, Olson GB, Stein E (2002) Philos Mag 82:429

    Article  CAS  Google Scholar 

  7. Harris WJ, Cohen M (1949) Trans AIME 180:447

    Google Scholar 

  8. Koistinen DP, Marburger RE (1959) Acta Metall 7:59

    Article  Google Scholar 

  9. Rios PR, Guimarães JRC (2007) Scr Mater 57:1105

    Article  CAS  Google Scholar 

  10. Rios PR, Guimarães JRC (2008) Mater Res 11:103. doi:https://doi.org/10.1590/S1516-14392008000100020

    Article  CAS  Google Scholar 

  11. van Bohemen SMC, Sietsma J, Hermans MJM, Richardson IM (2003) Acta Mater 51:4183

    Article  Google Scholar 

  12. Guimaraes JRC (2008) Mater Sci Eng A 476:106

    Article  Google Scholar 

  13. Guimarães JRC, Rios PR (2008) J Mater Sci. doi:https://doi.org/10.1007/s10853-008-2753-4

    Article  Google Scholar 

  14. Cech RE, Turnbull D (1956) Trans AIME 206:124

    Google Scholar 

  15. Fisher JC, Hollomon JH, Turnbull D (1949) AIME Trans 185:691

    Google Scholar 

  16. McMurtrie MG, Magee CL (1970) Metall Trans 1:3185

    CAS  Google Scholar 

  17. Mendiratta MG, Krauss G (1972) Metall Trans 2:1755

    Article  Google Scholar 

  18. Chen WYC, Winchell PG (1976) Metall Trans A 7:1177

    Article  Google Scholar 

  19. Magee CL (1970) In: Aaronson HI (ed) Phase transformations. ASM, Metals Park, p 115

    Google Scholar 

  20. Coleman R (1989) Can J Stat 17:27

    Article  Google Scholar 

  21. Russ JC, Dehoff RT (2000) Practical stereology, 2nd edn. Kluwer Academic, New York

    Book  Google Scholar 

  22. Fullman RL (1953) Trans AIME 197:447

    CAS  Google Scholar 

  23. Guimarães JRC (1982) In: Aaronson HI et al (eds) Solid-solid phase transformations. TMS AIME, Warrendale, p 1415

    Google Scholar 

  24. Lin MF, Olson GB, Cohen M (1992) Metall Trans A 23:2987

    Article  Google Scholar 

  25. Guimarães JRC, Saavedra A (1985) Metall Trans A 16:329

    Article  Google Scholar 

  26. Guimarães JRC, Gomes JC (1979) In: Owen WS (ed) ICOMAT-1979 proceedings. MIT Press, Cambridge, p 59

  27. Kelly PM (2006) Mater Sci Eng A 438:43

    Article  Google Scholar 

  28. Raghavan V, Entwisle AR (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 30

  29. Pati SR, Cohen M (1971) Acta Metall 19:1327

    Article  CAS  Google Scholar 

  30. Christian JW (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 43

  31. Entwisle AR (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 43

  32. Kaufman L, Cohen M (1958) Prog Met Phys 7:165

    Article  CAS  Google Scholar 

  33. Borgenstam A, Hillert M (1997) Acta Mater 45:651

    Article  CAS  Google Scholar 

  34. Ghosh G, Raghavan V (1986) Mater Sci Eng 79:223

    Article  CAS  Google Scholar 

  35. Ghosh G (1988) Mater Sci Eng A 101:213

    Article  CAS  Google Scholar 

  36. Guimaraes JRC (2008) Mater Sci Technol 24:843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (P.R. Rios) is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for his financial support. Thanks are due to Chris Hoffman (RMC Inc.) and to Professor H. Goldenstein (USP-SP) for their valuable assistance with the bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Rios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, J.R.C., Rios, P.R. Unified description of martensite microstructure and kinetics. J Mater Sci 44, 998–1005 (2009). https://doi.org/10.1007/s10853-008-3218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3218-5

Keywords

Navigation