Skip to main content
Log in

Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effect of chromium content in the range of 0.05–0.91 wt% on the microstructure and mechanical properties of Cr–Ni–Cu low alloy steel weld metal was investigated. All welds were prepared by manual metal arc welding technique in flat position. Microstructure of the welds was examined by optical and scanning electron microscope in both columnar and reheated regions of the weld metal. The results showed increase in acicular ferrite and microphases formed at the expense of primary ferrite and ferrite with second phase with steady refinement of microstructure. According to these microstructural changes, yield and ultimate tensile stresses, Hardness and Charpy V-Notch impact toughness increased, whereas elongation decreased. Increase in Charpy impact value is thought to be due to fine dispersed spheroidized dark microphases at high chromium contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bhadeshia HKDH, Svensson LE, Gretoft B (1985) Acta Metall 33:1271

    Article  CAS  Google Scholar 

  2. Bhadeshia HKDH, Svensson LE (1993) In: Cerjak H, Easterling KE (eds) Mathematical modeling of weld phenomena. Institute of Materials, London

  3. Kou S (2003) Welding metallurgy. John Wiley & Sons, New Jersey

    Google Scholar 

  4. Esterling KE (1985) Introduction to physical metallurgy of welding. Butterworths, London

    Google Scholar 

  5. Bhadeshia HKDH, Svensson LE, Gretoft B (1986) J Mater Sci 21:3947. doi:https://doi.org/10.1007/BF02431634

    Article  CAS  Google Scholar 

  6. Honeycombe RWK, Bhadeshia HKDH (2006) Steels. Butterworth-Heinemann Publications, Oxford

    Google Scholar 

  7. Bhadeshia HKDH (1997) In: Cerjak H, Bhadeshia HKDH (eds) Mathematical modeling of weld phenomena III. Institute of Materials, London

  8. Yang JR, Huang CY, Huang CF et al (1993) J Mater Sci Lett 12:1290

    Article  CAS  Google Scholar 

  9. Byun JS, Shim JH, Suh JY et al (2001) Mater Sci Eng A 319–321:326

    Article  Google Scholar 

  10. Ohkita S, Horii Y (1995) ISIJ Int 35:1170

    Article  CAS  Google Scholar 

  11. Jorge JCF, Souza LFG, Rebello JMA (2001) Mater Charact 47:195

    Article  CAS  Google Scholar 

  12. Jorge JCF, Souza LFG, Rebello JMA et al (2000) IIW doc. II-1398-00

  13. Surian ES, De-Vedia LA (1999) Welding J 78:217s

    Google Scholar 

  14. ANSI/AWS A5.5-96, Specification for low alloy steel electrodes for shielded metal arc welding. American Welding Society, Miami, 1996

  15. Bradley JR, Aaronson HI (1981) Metall Trans A 12:1729

    Article  CAS  Google Scholar 

  16. Beche A, Zurob HS, Hutchinson CR (2007) Metall Mater Trans A 38:2950

    Article  Google Scholar 

  17. Shiflet GJ, Aaronson HI, Bradley JR (1981) Metall Trans A 12:1743

    Article  CAS  Google Scholar 

  18. Babu SS (2004) Curr Opin Solid State Mater Sci 8:267

    Article  CAS  Google Scholar 

  19. Farrar RA, Harrison PL (1987) J Mater Sci 22:3812. doi:https://doi.org/10.1007/BF01133327

    Article  CAS  Google Scholar 

  20. Vander Voort GF (1992) Metals handbook, vol 9. ASM Int., Ohio

    Google Scholar 

  21. Harrison PL, Farrar RA (1981) J Mater Sci 16:2218. doi:https://doi.org/10.1007/BF00542384

    Article  CAS  Google Scholar 

  22. Bhadeshia HKDH (2001) Bainite in steels. IOM Comunications Ltd., London

    Google Scholar 

  23. Lee TK, Kim HJ, Kang BY et al (2000) ISIJ Int 40:1260

    Article  CAS  Google Scholar 

  24. Court SA, Pollard G (1989) Metallography 22:219

    Article  CAS  Google Scholar 

  25. St-Laurent S, L’Esperance G (1992) Mater Sci Eng A 149:203

    Article  Google Scholar 

  26. Tweed JH, Knott JF (1987) Acta Metall 35:1401

    Article  CAS  Google Scholar 

  27. Sugden AB, Bhadeshia HKDH (1988) Metall Trans A 19:669

    Article  Google Scholar 

  28. Garrison WM Jr, Wojcieszynski AL (2007) Mater Sci Eng A 464:321

    Article  Google Scholar 

  29. Bose-Filho WW, Carvalho ALM, Strangwood M (2007) Mater Charact 58:29

    Article  CAS  Google Scholar 

  30. Shim JH, Oh YJ, Suh JY et al (2001) Acta Mater 49:2115

    Article  CAS  Google Scholar 

  31. Dowling JM, Corbett JM, Kerr HW (1986) Metall Trans A 17:1611

    Article  Google Scholar 

  32. Sugden AB, Bhadeshia HKDH (1988) Metall Trans A 19:1597

    Article  Google Scholar 

  33. Powell GLF, Herfurth G (1998) Metall Mater Trans A 29:2775

    Article  Google Scholar 

  34. Ishikawa T, Haze T (1994) Mater Sci Eng A 176:385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Kargozar, the deputy, and Mr. E. Abbasi, the research manager of “JVOC” for fabrication of laboratory electrodes and preparing all the samples. Mr. Avazkonandeh also thanks “Nahamin Pardazan Asia Co.” for support in quantitative metallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haddad-Sabzevar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avazkonandeh-Gharavol, M.H., Haddad-Sabzevar, M. & Haerian, A. Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal. J Mater Sci 44, 186–197 (2009). https://doi.org/10.1007/s10853-008-3103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3103-2

Keywords

Navigation