Skip to main content
Log in

Dielectric response features and oxygen migration on rare earth modified lead titanate ferroelectric ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare earth (RE) and manganese-modified lead titanate ceramics were studied concerning the presence of two peaks in the temperature dependence of the dielectric permittivity. An eventual incorporation of the RE into A-site and/or B-site in the perovskite structure and the oxygen migration were considered as causes of the observed phenomenon. The structural analysis showed that at least a small amount of Ti4+ could be substituted by the RE ions. It was considered from the pyroelectric and electrical conductivity results that, even when an eventual incorporation of the RE into the A-site and/or B-site of the structure could be possible, both peaks could not be associated with paraelectric–ferroelectric (PE-FE) phase transitions. The observed peak at lower temperatures has been associated with the PE-FE phase transitions, whereas the hopping of oxygen vacancies has been considered as the cause for the dielectric anomaly observed at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rossetti GA, Cross LE, Cline JP (1999) J Mater Sci 30:24. doi:https://doi.org/10.1007/BF00352127

    Article  Google Scholar 

  2. Ito Y, Takeuchi H, Nagatsuma N, Jyomura S, Ashida S (1981) J Appl Phys 52:3223

    Article  CAS  Google Scholar 

  3. Ichinose N (1985) Am Ceram Soc Bull 64:1581

    CAS  Google Scholar 

  4. Pérez-Martínez O, Calderón F, Pentón A, Suaste E, Rivera M, Leccabue F, Boccelli G, Watts E (1995) Rev Mex Fis 41:85

    Google Scholar 

  5. Pérez-Martínez O, Saniger JM, Peláiz-Barranco A, Calderón-Piñar F (1999) J Mater Res 14:3083

    Article  Google Scholar 

  6. Pérez-Martínez O, Saniger JM, Torres-García E, Flores JO, Calderón-Piñar F, Llópiz JC, Peláiz-Barranco A (1997) J Mat Sci Lett 16:1161

    Google Scholar 

  7. Ch Ang, Yu Z, Cross LE (2000) Phys Rev B 62:228

    Article  Google Scholar 

  8. Johnson DW, Cross LE, Hummel FA (1970) J Appl Phys 41:2828

    Article  CAS  Google Scholar 

  9. Stumpe R, Wagner D, Bauerle D (1983) Phys Stat Sol A 75:143

    Article  CAS  Google Scholar 

  10. Bidault O, Goux P, Kchikech M, Belkaomi M, Maglione M (1994) Phys Rev B 49:7868

    Article  CAS  Google Scholar 

  11. Kang BS, Choi SK, Park CH (2003) J Appl Phys 94:1904

    Article  CAS  Google Scholar 

  12. Peláiz-Barranco A, Guerra JDS, López-Noda R, Araújo EB (2008) J Phys D Appl Phys 41:215503

    Article  Google Scholar 

  13. Takeuchi H, Jhomura S, Nakaya P, Ishikawa Y (1983) Jpn J Appl Phys 22:166

    Article  CAS  Google Scholar 

  14. Takeuchi H, Jhomura S, Nakaya P (1985) Jpn J Appl Phys 24:36

    Article  CAS  Google Scholar 

  15. Tura V, Mitoseriu L, Papusoi C, Osaka T, Okuyama M (1998) J Electroceram 2:163

    Article  CAS  Google Scholar 

  16. Kinoshita K, Yamaji A (1976) J Appl Phys 47:371

    Article  CAS  Google Scholar 

  17. Frey MH, Payne DA (1996) Phys Rev B 54:3158

    Article  CAS  Google Scholar 

  18. Arlt G (1990) J Mater Sci 25:2655. doi:https://doi.org/10.1007/BF00584864

    Article  CAS  Google Scholar 

  19. Zhong WL, Wang YG, Zhang PL (1994) Phys Lett A 189:121

    Article  CAS  Google Scholar 

  20. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  21. Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystal. Springer-Verlag, Berlin

    Book  Google Scholar 

  22. Xu Y (1991) Ferroelectric materials and their applications. Elsevier Science Publishers, Netherlands

    Google Scholar 

  23. Cotton FA, Wilkinson G, Wilkinson CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  24. Halliyal A (1987) Am Ceram Soc Bull 66:671

    CAS  Google Scholar 

  25. Ramírez-Rosales D, Zamorano-Ulloa R, Pérez-Martínez O (2001) Solid State Comm 118:371

    Article  Google Scholar 

  26. Saiful-Islam M (2000) J Mater Chem 10:1027

    Article  Google Scholar 

  27. Jiménez B, Vicente JM (1998) J Phys D Appl Phys 31:446

    Article  Google Scholar 

  28. Lang SB (1974) Ferroelectrics 7:231

    Article  Google Scholar 

  29. Berlincourt D (1956) IRE Trans Ultrason Eng 4:53

    Article  Google Scholar 

  30. Jaffe H (1958) J Am Ceram Soc 41:494

    Article  CAS  Google Scholar 

  31. Berlincourt D, Crolik C, Jaffe H (1960) Proc IRE 48:220

    Article  CAS  Google Scholar 

  32. Blood HL, Levine S, Roberts NH (1956) J Appl Phys 27:660

    Article  CAS  Google Scholar 

  33. Northrip JW (1960) J Appl Phys 31:2293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Third World Academy of Sciences (RG/PHYS/LA No. 99-050, No. 02-225, No. 05-043) and FAPESP Brazilian agency (Proc. No. 06/60013-5) for financial support, and ICTP for financial support of Latin-American Network of Ferroelectric Materials (NET-43). Dr. Peláiz-Barranco wishes to thank Universidad Autónoma de Madrid for financial support. Dr. Calderón-Piñar wishes to thank the ICTP program for Training and Research in Italian laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peláiz-Barranco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peláiz-Barranco, A., Guerra, J.D.S., Calderón-Piñar, F. et al. Dielectric response features and oxygen migration on rare earth modified lead titanate ferroelectric ceramics. J Mater Sci 44, 204–211 (2009). https://doi.org/10.1007/s10853-008-3100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3100-5

Keywords

Navigation