Skip to main content
Log in

Cyclic hardening behavior for interstitial-free steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Strain-controlled fatigue experiments were employed to evaluate automotive-grade interstitial-free ferrite steels under R = 0. Hundreds of grains were examined by scanning electron microscope (SEM) under electron channeling contrast image technique of backscattered electron image mode (BEI/ECCI) for comprehensive comparison of micrographs with those taken under transmission electron microscope (TEM). It is clearly revealed that cyclic hardening was virtually unobvious and dislocation cell structures were very rare when Δε/2 was controlled to within 0.1%. When Δε/2 was increased to 0.2%, the general dislocation structure exhibited a predominately dislocation wall structure prior to the secondary cyclic hardening, after which the formation of dislocation cells were observed. At Δε/2 = 1.0%, following an initial rapid-hardening stage, the dislocation cell structure of low-angle misorientation formed in the early stage was gradually converted into high-angle misorientation as the cyclic strain continued to be imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luoh T, Chang CP (1998) Mater Sci Eng A256:18

    Article  CAS  Google Scholar 

  2. Toribio J, Kharin V (2006) J Mater Sci 41:6015. doi:https://doi.org/10.1007/s10853-006-0364-5

    Article  CAS  Google Scholar 

  3. Kuokkala VT, Kettunen P (1985) Acta Metall 33:2041

    Article  CAS  Google Scholar 

  4. Polák J, Obrtlík K, Hájek M, Vašek A (1992) Mater Sci Eng A151:19

    Article  Google Scholar 

  5. Magnin T, Ramade C, Lepinoux J, Kubin LP (1989) Mater Sci Eng A118:41

    Article  CAS  Google Scholar 

  6. Wang R, Mugrhabi H (1984) Mater Sci Eng 63:147

    Article  CAS  Google Scholar 

  7. Gerland M, Violan P (1986) Mater Sci Eng 84:23

    Article  CAS  Google Scholar 

  8. Chen CY, Huang JY, Yeh JJ (2003) J Mater Sci 38:817. doi:https://doi.org/10.1023/A:1021817216519

    Article  CAS  Google Scholar 

  9. Wang R, Mugrhabi H, McGovern S, Rapp M (1984) Mater Sci Eng 65:219

    Article  CAS  Google Scholar 

  10. Figueroa JC, Bhat SP, Delaveaux R, Murzenski S, Laird C (1981) Acta Metall 29:1667

    Article  CAS  Google Scholar 

  11. Fujii T, Shintate H, Yaguchi H, Mitani H, Inada A, Shinkai K, Kumai S, Kato M (1997) ISIJ Int 37:1230

    Article  CAS  Google Scholar 

  12. Videm M, Ryum N (1996) Mater Sci Eng A219:1

    Article  CAS  Google Scholar 

  13. Videm M, Ryum N (1996) Mater Sci Eng A219:11

    Article  CAS  Google Scholar 

  14. Lin TL, Wu JS, Chen XF (1987) Mater Sci Eng 86:19

    Article  CAS  Google Scholar 

  15. Planell JA, Guiu F (1986) Philos Mag A54:325

    Article  Google Scholar 

  16. Mori H, Tokuwame M, Miyazaki T (1979) Philos Mag A40:409

    Article  Google Scholar 

  17. Mori H, Oba N, Miyazaki T, Kozakai T (1980) Philos Mag A42:483

    Article  Google Scholar 

  18. Šesták B, Novák V, Libovický S (1988) Philos Mag A57:353

    Article  Google Scholar 

  19. Mughrabi H, Herz K, Stark X (1981) Int J Fract 17:193

    Article  CAS  Google Scholar 

  20. Mughrabi H, Herz K, Stark X (1976) Acta Metall 24:659

    Article  CAS  Google Scholar 

  21. Sommer C, Mughrabi H, Lochner D (1998) Acta Metall 46:1527

    CAS  Google Scholar 

  22. Abdel-Raouf H, Plumtree A (1971) Metall Trans 2:1863

    Article  CAS  Google Scholar 

  23. Chopra OK, Gowda CVB (1974) Philos Mag 30:583

    Article  CAS  Google Scholar 

  24. Ikeda S (1981) Trans Jpn Inst Met 22:267

    Article  CAS  Google Scholar 

  25. Kuhlmann-Wilsdorf D, van der Merwe JH (1982) Mater Sci Eng 55:79

    Article  Google Scholar 

  26. Kuhlmann-Wilsdorf D (1987) Mater Sci Eng 86:53

    Article  CAS  Google Scholar 

  27. Li XW, Zhou Y (2007) J Mater Sci 42:4716. doi:https://doi.org/10.1007/s10853-007-1758-8

    Article  CAS  Google Scholar 

  28. Ahmed J, Wilkinson AJ, Roberts SG (2001) Philos Mag A81:1473

    Article  Google Scholar 

  29. Ahmed J, Wilkinson AJ, Roberts SG (1997) Philos Mag Lett 76:237

    Article  CAS  Google Scholar 

  30. Li SX, Li MY, Zhu R, Chao YS (2004) Philos Mag 84:3323

    Article  CAS  Google Scholar 

  31. Huang HL, Ho NJ (2003) Mater Sci Eng A345:215

    Article  CAS  Google Scholar 

  32. Huang HL, Ho NJ (2000) Mater Sci Eng A279:254

    Article  CAS  Google Scholar 

  33. Kaneko Y, Ishikawa M, Hashimoto S (2005) Mater Sci Eng A400–401:418

    Article  Google Scholar 

  34. Awatani J, Katagiri K, Nakai H (1978) Metall Trans 9A:111

    Article  CAS  Google Scholar 

  35. Ogura T, Masumoto T (1976) Trans Jpn Inst Met 17:733

    Article  CAS  Google Scholar 

  36. Awatani J, Katagiri K, Shiraishi T (1976) Metal Trans 7A:807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Council, Taiwan, ROC under contract NSC94-2216-E-110-008, and partly by the Center for Nanoscience and Nanotechnology at National Sun Yat-Sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Lu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CC., Ho, NJ. & Huang, HL. Cyclic hardening behavior for interstitial-free steel. J Mater Sci 44, 212–220 (2009). https://doi.org/10.1007/s10853-008-3096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3096-x

Keywords

Navigation